Do you want to publish a course? Click here

Ribbon operators in the generalized Kitaev quantum double model based on Hopf algebras

436   0   0.0 ( 0 )
 Added by Penghua Chen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Kitaevs quantum double model is a family of exactly solvable lattice models that realize two dimensional topological phases of matter. Originally it is based on finite groups, and is later generalized to semi-simple Hopf algebras. We rigorously define and study ribbon operators in the generalized Kitaev quantum double model. These ribbon operators are important tools to understand quasi-particle excitations. It turns out that there are some subtleties in defining the operators in contrast to what one would naively think. In particular, one has to distinguish two classes of ribbons which we call locally clockwise and locally counterclockwise ribbons. Moreover, this issue already exists in the original model based on finite non-Abelian groups. We show how certain properties would fail even in the original model if we do not distinguish these two classes of ribbons. Perhaps not surprisingly, under the new definitions ribbon operators satisfy all properties that are expected. For instance, they create quasi-particle excitations only at the end of the ribbon, and the types of the quasi-particles correspond to irreducible representations of the Drinfeld double of the input Hopf algebra. However, the proofs of these properties are much more complicated than those in the case of finite groups. This is partly due to the complications in dealing with general Hopf algebras rather than just group algebras.



rate research

Read More

115 - Jason Gaddis , Robert Won 2021
We study actions of pointed Hopf algebras in the $ZZ$-graded setting. Our main result classifies inner-faithful actions of generalized Taft algebras on quantum generalized Weyl algebras which respect the $ZZ$-grading. We also show that generically the invariant rings of Taft actions on quantum generalized Weyl algebras are commutative Kleinian singularities.
In this paper, first we introduce the notion of a twilled 3-Lie algebra, and construct an $L_infty$-algebra, whose Maurer-Cartan elements give rise to new twilled 3-Lie algebras by twisting. In particular, we recover the Lie $3$-algebra whose Maurer-Cartan elements are O-operators (also called relative Rota-Baxter operators) on 3-Lie algebras. Then we introduce the notion of generalized matched pairs of 3-Lie algebras using generalized representations of 3-Lie algebras, which will give rise to twilled 3-Lie algebras. The usual matched pairs of 3-Lie algebras correspond to a special class of twilled 3-Lie algebras, which we call strict twilled 3-Lie algebras. Finally, we use O-operators to construct explicit twilled 3-Lie algebras, and explain why an $r$-matrix for a 3-Lie algebra can not give rise to a double construction 3-Lie bialgebra. Examples of twilled 3-Lie algebras are given to illustrate the various interesting phenomenon.
125 - Minkyu Kim 2020
The codomain category of a generalized homology theory is the category of modules over a ring. For an abelian category A, an A-valued (generalized) homology theory is defined by formally replacing the category of modules with the category A. It is known that the category of bicommutative (i.e. commutative and cocommutative) Hopf algebras over a field k is an abelian category. Denote the category by H. In this paper, we give some ways to construct H-valued homology theories. As a main result, we give H-valued homology theories whose coefficients are neither group Hopf algebras nor function Hopf algebras. The examples contain not only ordinary homology theories but also extraordinary ones.
128 - Maxim Goncharov 2020
We generalize the notion of a Rota-Baxter operator on groups and the notion of a Rota-Baxter operator of weight 1 on Lie algebras and define and study the notion of a Rota-Baxter operator on a cocommutative Hopf algebra $H$. If $H=F[G]$ is the group algebra of a group $G$ or $H=U(mathfrak{g})$ the universal enveloping algebra of a Lie algebra $mathfrak{g}$, then we prove that Rota-Baxter operators on $H$ are in one to one correspondence with corresponding Rota-Baxter operators on groups or Lie algebras.
In this paper, we introduce the definition of generalized BiHom-Lie algebras and generalized BiHom-Lie admissible algebras in the category ${}_H{mathcal M}$ of left modules for any quasitriangular Hopf algebra $(H, R) $. Also, we describe the BiHom-Lie ideal structures of the BiHom-associative algebras.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا