Persistent homology with non-contractible preimages


Abstract in English

For a fixed $N$, we analyze the space of all sequences $z=(z_1,dots,z_N)$, approximating a continuous function on the circle, with a given persistence diagram $P$, and show that the typical components of this space are homotopy equivalent to $S^1$. We also consider the space of functions on $Y$-shaped (resp., star-shaped) trees with a 2-point persistence diagram, and show that this space is homotopy equivalent to $S^1$ (resp., to a bouquet of circles).

Download