Do you want to publish a course? Click here

Correlation functions for open XXX spin 1/2 quantum chains with unparallel boundary magnetic fields

162   0   0.0 ( 0 )
 Added by Giuliano Niccoli G.
 Publication date 2021
  fields Physics
and research's language is English
 Authors G. Niccoli




Ask ChatGPT about the research

In this first paper, we start the analysis of correlation functions of quantum spin chains with general integrable boundary conditions. We initiate these computations for the open XXX spin 1/2 quantum chains with some unparallel magnetic fields allowing for a spectrum characterization in terms of homogeneous Baxter like TQ-equations, in the framework of the quantum separation of variables (SoV). Previous SoV analysis leads to the formula for the scalar products of the so-called separate states. Here, we solve the remaining fundamental steps allowing for the computation of correlation functions. In particular, we rederive the ground state density in the thermodynamic limit thanks to SoV approach, we compute the so-called boundary-bulk decomposition of boundary separate states and the action of local operators on these separate states in the case of unparallel boundary magnetic fields. These findings allow us to derive multiple integral formulae for these correlation functions similar to those previously known for the open XXX quantum spin chain with parallel magnetic fields.



rate research

Read More

143 - G. Niccoli , H. Pei , V. Terras 2020
We explain how to compute correlation functions at zero temperature within the framework of the quantum version of the Separation of Variables (SoV) in the case of a simple model: the XXX Heisenberg chain of spin 1/2 with twisted (quasi-periodic) boundary conditions. We first detail all steps of our method in the case of anti-periodic boundary conditions. The model can be solved in the SoV framework by introducing inhomogeneity parameters. The action of local operators on the eigenstates are then naturally expressed in terms of multiple sums over these inhomogeneity parameters. We explain how to transform these sums over inhomogeneity parameters into multiple contour integrals. Evaluating these multiple integrals by the residues of the poles outside the integration contours, we rewrite this action as a sum involving the roots of the Baxter polynomial plus a contribution of the poles at infinity. We show that the contribution of the poles at infinity vanishes in the thermodynamic limit, and that we recover in this limit for the zero-temperature correlation functions the multiple integral representation that had been previously obtained through the study of the periodic case by Bethe Ansatz or through the study of the infinite volume model by the q-vertex operator approach. We finally show that the method can easily be generalized to the case of a more general non-diagonal twist: the corresponding weights of the different terms for the correlation functions in finite volume are then modified, but we recover in the thermodynamic limit the same multiple integral representation than in the periodic or anti-periodic case, hence proving the independence of the thermodynamic limit of the correlation functions with respect to the particular form of the boundary twist.
We use the quantum separation of variable (SOV) method to construct the eigenstates of the open XXZ chain with the most general boundary terms. The eigenstates in the inhomogeneous case are constructed in terms of solutions of a system of quadratic equations. This SOV representation permits us to compute scalar products and can be used to calculate form factors and correlation functions.
We extend duality between the quantum integrable Gaudin models with boundary and the classical Calogero-Moser systems associated with root systems of classical Lie algebras $B_N$, $C_N$, $D_N$ to the case of supersymmetric ${rm gl}(m|n)$ Gaudin models with $m+n=2$. Namely, we show that the spectra of quantum Hamiltonians for all such magnets being identified with the classical particles velocities provide the zero level of the classical action variables.
174 - S. Faldella , G. Niccoli 2013
The analysis of the transfer matrices associated to the most general representations of the 8-vertex reflection algebra on spin-1/2 chains is here implemented by introducing a quantum separation of variables (SOV) method which generalizes to these integrable quantum models the method first introduced by Sklyanin. More in detail, for the representations reproducing in their homogeneous limits the open XYZ spin-1/2 quantum chains with the most general integrable boundary conditions, we explicitly construct representations of the 8-vertex reflection algebras for which the transfer matrix spectral problem is separated. Then, in these SOV representations we get the complete characterization of the transfer matrix spectrum (eigenvalues and eigenstates) and its non-degeneracy. Moreover, we present the first fundamental step toward the characterization of the dynamics of these models by deriving determinant formulae for the matrix elements of the identity on separated states, which apply in particular to transfer matrix eigenstates. The comparison of our analysis for the 8-vertex reflection algebra with that of [1, 2] for the 6-vertex one leads to the interesting remark that a profound similarity in both the characterization of the spectral problems and of the scalar products exists for these two different realizations of the reflection algebra once they are described by SOV method. As it will be shown in a future publication, this remarkable similarity will be at the basis of the simultaneous determination of form factors of local operators of integrable quantum models associated to general reflection algebra representations of both 8-vertex and 6-vertex type.
We present an approach that gives rigorous construction of a class of crossing invariant functions in $c=1$ CFTs from the weakly invariant distributions on the moduli space $mathcal M_{0,4}^{SL(2,mathbb{C})}$ of $SL(2,mathbb{C})$ flat connections on the sphere with four punctures. By using this approach we show how to obtain correlation functions in the Ashkin-Teller and the Runkel-Watts theory. Among the possible crossing-invariant theories, we obtain also the analytic Liouville theory, whose consistence was assumed only on the basis of numerical tests.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا