Do you want to publish a course? Click here

Variation on a Zernike wavefront sensor theme: optimal use of photons

121   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Zernike wavefront sensor (ZWFS) is a concept belonging to the wide class Fourier-filtering wavefront sensor (FFWFS). The ZWFS is known for its extremely high sensitivity while having a low dynamic range, which makes it a unique sensor for second stage adaptive optics (AO) systems or quasi-static aberrations calibration sensor. This sensor is composed of a focal plane mask made of a phase shifting dot fully described by two parameters: its diameter and depth. In this letter, we aim to improve the performance of this sensor by changing the diameter of its phase shifting dot. We begin with a general theoretical framework providing an analytical description of the FFWFS properties, then we predict the expected ZWFS sensitivity for different configurations of dot diameters and depths. The analytical predictions are then validated with end-to-end simulations. From this, we propose a variation of the classical ZWFS shape which exhibits extremely appealing properties. We show that the ZWFS sensitivity can be optimized by modifying the dot diameter and even reach the optimal theoretical limit, with a trade-off for low spatial frequencies sensitivity. As an example, we show that a ZWFS with a 2{lambda}/D dot diameter (where {lambda} is the sensing wavelength and D the telescope diameter), hereafter called Z2WFS, exhibits a sensitivity twice higher than the classical 1.06{lambda}/D ZWFS for all the phase spatial components except for tip-tilt modes. Furthermore, this gain in sensitivity does not impact the dynamic range of the sensor, and the Z2WFS exhibits a similar dynamical range as the classical 1.06{lambda}/D ZWFS. This study opens the path to the conception of diameter-optimized ZWFS.



rate research

Read More

We propose a new type of Wave Front Sensor (WFS) derived from the Pyramid WFS (PWFS). This new WFS, called the Flattened Pyramid-WFS (FPWFS), has a reduced Pyramid angle in order to optically overlap the four pupil images into an unique intensity. This map is then used to derive the phase information. In this letter this new WFS is compared to three existing WFSs, namely the PWFS, the Modulated PWFS (MPWFS) and the Zernike WFS (ZWFS) following tests about sensitivity, linearity range and low photon flux behavior. The FPWFS turns out to be more linear than a modulated pyramid for the high-spatial order aberrations but it provides an improved sensitivity compared to the non-modulated pyramid. The noise propagation may even be as low as the ZWFS for some given radial orders. Furthermore, the pixel arrangement being more efficient than for the PWFS, the FPWFS seems particularly well suited for high-contrast applications.
Imaging exo-Earths is an exciting but challenging task because of the 10^-10 contrast ratio between these planets and their host star at separations narrower than 100 mas. Large segmented aperture space telescopes enable the sensitivity needed to observe a large number of planets. Combined with coronagraphs with wavefront control, they present a promising avenue to generate a high-contrast region in the image of an observed star. Another key aspect is the required stability in telescope pointing, focusing, and co-phasing of the segments of the telescope primary mirror for long-exposure observations of rocky planets for several hours to a few days. These wavefront errors should be stable down to a few tens of picometers RMS, requiring a permanent active correction of these errors during the observing sequence. To calibrate these pointing errors and other critical low-order aberrations, we propose a wavefront sensing path based on Zernike phase-contrast methods to analyze the starlight that is filtered out by the coronagraph at the telescope focus. In this work we present the analytical retrieval of the incoming low order aberrations in the starlight beam that is filtered out by an Apodized Pupil Lyot Coronagraph, one of the leading coronagraph types for starlight suppression. We implement this approach numerically for the active control of these aberrations and present an application with our first experimental results on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed, the STScI testbed for Earth-twin observations with future large space observatories, such as LUVOIR and HabEx, two NASA flagship mission concepts.
Segmented aperture telescopes require an alignment procedure with successive steps from coarse alignment to monitoring process in order to provide very high optical quality images for stringent science operations such as exoplanet imaging. The final step, referred to as fine phasing, calls for a high sensitivity wavefront sensing and control system in a diffraction-limited regime to achieve segment alignment with nanometric accuracy. In this context, Zernike wavefront sensors represent promising options for such a calibration. A concept called the Zernike unit for segment phasing (ZEUS) was previously developed for ground-based applications to operate under seeing-limited images. Such a concept is, however, not suitable for fine cophasing with diffraction-limited images. We revisit ZELDA, a Zernike sensor that was developed for the measurement of residual aberrations in exoplanet direct imagers, to measure segment piston, tip, and tilt in the diffraction-limited regime. We introduce a novel analysis scheme of the sensor signal that relies on piston, tip, and tilt estimators for each segment, and provide probabilistic insights to predict the success of a closed-loop correction as a function of the initial wavefront error. The sensor unambiguously and simultaneously retrieves segment piston and tip-tilt misalignment. Our scheme allows for correction of these errors in closed-loop operation down to nearly zero residuals in a few iterations. This sensor also shows low sensitivity to misalignment of its parts and high ability for operation with a relatively bright natural guide star. Our cophasing sensor relies on existing mask technologies that make the concept already available for segmented apertures in future space missions.
The ingot wavefront sensor (I-WFS) has been proposed, for ELT-like apertures, as a possible pupil plane WFS, to cope with the geometrical characteristics of a laser guide star (LGS). Within the study and development of such a WFS, on-going in the framework of the MAORY project, the final purpose of the I-WFS simulation is to estimate its performance in terms of wavefront aberration measurement capability. The first step of this analysis is to translate incoming wavefronts into the three pupil images, produced by the optical system. The intrinsic geometrical characteristics of the ingot optical element, designed to be coupled with the LGS elongated image, make the system conceptually different with respect to other pupil WFSs (like the Pyramid WFS, P-WFS) also in terms of the simulation technique to be selected, within the ones which can be found in literature. In this paper, we aim to report the considerations and derivations which led to the selection of a ray-tracing method for ingot pupil images simulation, and the geometrical assumptions and approach made to optimize the computing time.
Adaptive optics systems correct atmospheric turbulence in real time. Most adaptive optics systems used routinely correct in the near infrared, at wavelengths greater than 1 micron. MagAO- X is a new extreme adaptive optics (ExAO) instrument that will offer corrections at visible-to- near-IR wavelengths. MagAO-X will achieve Strehl ratios greater than 70% at H-alpha when running the 2040 actuator deformable mirror at 3.6 kHz. A visible pyramid wavefront sensor (PWFS) optimized for sensing at 600-1000 nm wavelengths will provide the high-order wavefront sensing on MagAO- X. We present the optical design and predicted performance of the MagAO-X pyramid wavefront sensor.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا