No Arabic abstract
Graph Neural Networks have emerged as a useful tool to learn on the data by applying additional constraints based on the graph structure. These graphs are often created with assumed intrinsic relations between the entities. In recent years, there have been tremendous improvements in the architecture design, pushing the performance up in various prediction tasks. In general, these neural architectures combine layer depth and node feature aggregation steps. This makes it challenging to analyze the importance of features at various hops and the expressiveness of the neural network layers. As different graph datasets show varying levels of homophily and heterophily in features and class label distribution, it becomes essential to understand which features are important for the prediction tasks without any prior information. In this work, we decouple the node feature aggregation step and depth of graph neural network and introduce several key design strategies for graph neural networks. More specifically, we propose to use softmax as a regularizer and Soft-Selector of features aggregated from neighbors at different hop distances; and Hop-Normalization over GNN layers. Combining these techniques, we present a simple and shallow model, Feature Selection Graph Neural Network (FSGNN), and show empirically that the proposed model outperforms other state of the art GNN models and achieves up to 64% improvements in accuracy on node classification tasks. Moreover, analyzing the learned soft-selection parameters of the model provides a simple way to study the importance of features in the prediction tasks. Finally, we demonstrate with experiments that the model is scalable for large graphs with millions of nodes and billions of edges.
In this work, we aim to predict the future motion of vehicles in a traffic scene by explicitly modeling their pairwise interactions. Specifically, we propose a graph neural network that jointly predicts the discrete interaction modes and 5-second future trajectories for all agents in the scene. Our model infers an interaction graph whose nodes are agents and whose edges capture the long-term interaction intents among the agents. In order to train the model to recognize known modes of interaction, we introduce an auto-labeling function to generate ground truth interaction labels. Using a large-scale real-world driving dataset, we demonstrate that jointly predicting the trajectories along with the explicit interaction types leads to significantly lower trajectory error than baseline methods. Finally, we show through simulation studies that the learned interaction modes are semantically meaningful.
We present a general-purpose method to train Markov chain Monte Carlo kernels, parameterized by deep neural networks, that converge and mix quickly to their target distribution. Our method generalizes Hamiltonian Monte Carlo and is trained to maximize expected squared jumped distance, a proxy for mixing speed. We demonstrate large empirical gains on a collection of simple but challenging distributions, for instance achieving a 106x improvement in effective sample size in one case, and mixing when standard HMC makes no measurable progress in a second. Finally, we show quantitative and qualitative gains on a real-world task: latent-variable generative modeling. We release an open source TensorFlow implementation of the algorithm.
We present a probabilistic variant of the recently introduced maxout unit. The success of deep neural networks utilizing maxout can partly be attributed to favorable performance under dropout, when compared to rectified linear units. It however also depends on the fact that each maxout unit performs a pooling operation over a group of linear transformations and is thus partially invariant to changes in its input. Starting from this observation we ask the question: Can the desirable properties of maxout units be preserved while improving their invariance properties ? We argue that our probabilistic maxout (probout) units successfully achieve this balance. We quantitatively verify this claim and report classification performance matching or exceeding the current state of the art on three challenging image classification benchmarks (CIFAR-10, CIFAR-100 and SVHN).
Performing analytical tasks over graph data has become increasingly interesting due to the ubiquity and large availability of relational information. However, unlike images or sentences, there is no notion of sequence in networks. Nodes (and edges) follow no absolute order, and it is hard for traditional machine learning (ML) algorithms to recognize a pattern and generalize their predictions on this type of data. Graph Neural Networks (GNN) successfully tackled this problem. They became popular after the generalization of the convolution concept to the graph domain. However, they possess a large number of hyperparameters and their design and optimization is currently hand-made, based on heuristics or empirical intuition. Neural Architecture Search (NAS) methods appear as an interesting solution to this problem. In this direction, this paper compares two NAS methods for optimizing GNN: one based on reinforcement learning and a second based on evolutionary algorithms. Results consider 7 datasets over two search spaces and show that both methods obtain similar accuracies to a random search, raising the question of how many of the search space dimensions are actually relevant to the problem.
While machine learning techniques have been successfully applied in several fields, the black-box nature of the models presents challenges for interpreting and explaining the results. We develop a new framework called Adaptive Explainable Neural Networks (AxNN) for achieving the dual goals of good predictive performance and model interpretability. For predictive performance, we build a structured neural network made up of ensembles of generalized additive model networks and additive index models (through explainable neural networks) using a two-stage process. This can be done using either a boosting or a stacking ensemble. For interpretability, we show how to decompose the results of AxNN into main effects and higher-order interaction effects. The computations are inherited from Googles open source tool AdaNet and can be efficiently accelerated by training with distributed computing. The results are illustrated on simulated and real datasets.