No Arabic abstract
The instability of mixing in the Kuramoto model of coupled phase oscillators is the key to understanding a range of spatiotemporal patterns, which feature prominently in collective dynamics of systems ranging from neuronal networks, to coupled lasers, to power grids. In this paper, we describe a codimension-2 bifurcation of mixing whose unfolding, in addition to the classical scenario of the onset of synchronization, also explains the formation of clusters and chimeras. We use a combination of linear stability analysis and Penrose diagrams to identify and analyze a variety of spatiotemporal patterns including stationary and traveling coherent clusters and twisted states, as well as their combinations with regions of incoherent behavior called chimera states. The linear stability analysis is used to estimate of the velocity distribution within these structures. Penrose diagrams, on the other hand, predict accurately the basins of their existence. Furthermore, we show that network topology can endow chimera states with nontrivial spatial organization. In particular, we present twisted chimera states, whose coherent regions are organized as stationary or traveling twisted states. The analytical results are illustrated with numerical bifurcation diagrams computed for the Kuramoto model with uni-, bi-, and tri-modal frequency distributions and all-to-all and nonlocal nearest-neighbor connectivity.
We investigate the basin of attraction properties and its boundaries for chimera states in a circulant network of Henon maps. Chimera states, for which coherent and incoherent domains coexist, emerge as a consequence of the coexistence of basin of attractions for each state. It is known that the coexisting basins of attraction lead to a hysteretic behaviour in the diagrams for the density of incoherent and coherent states as a function of a varying parameter. Consequently, the distribution of chimera states can remain invariant by a parameter change, as well as it can suffer subtle changes when one of the basin ceases to exist. A similar phenomenon is observed when perturbations are applied in the initial conditions. By means of the uncertainty exponent, we characterise the basin boundaries between the coherent and chimera states, and between the incoherent and chimera states, and uncover fractal and riddled boundaries, respectively. This way, we show that the density of chimera states can be not only moderately sensitive but also highly sensitive to initial conditions. This chimeras dilemma is a consequence of the fractal and riddled nature of the basins boundaries.
Two symmetrically coupled populations of N oscillators with inertia $m$ display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendula. In particular, we report the first evidence of intermittent chaotic chimeras, where one population is synchronized and the other jumps erratically between laminar and turbulent phases. These states have finite life-times diverging as a power-law with N and m. Lyapunov analyses reveal chaotic properties in quantitative agreement with theoretical predictions for globally coupled dissipative systems.
In this work we studied the combined action of chemical and electrical synapses in small networks of Hindmarsh-Rose (HR) neurons on the synchronous behaviour and on the rate of information produced (per time unit) by the networks. We show that if the chemical synapse is excitatory, the larger the chemical synapse strength used the smaller the electrical synapse strength needed to achieve complete synchronisation, and for moderate synaptic strengths one should expect to find desynchronous behaviour. Otherwise, if the chemical synapse is inhibitory, the larger the chemical synapse strength used the larger the electrical synapse strength needed to achieve complete synchronisation, and for moderate synaptic strengths one should expect to find synchronous behaviours. Finally, we show how to calculate semi-analytically an upper bound for the rate of information produced per time unit (Kolmogorov-Sinai entropy) in larger networks. As an application, we show that this upper bound is linearly proportional to the number of neurons in a network whose neurons are highly connected.
Oscillatory dynamics of complex networks has recently attracted great attention. In this paper we study pattern formation in oscillatory complex networks consisting of excitable nodes. We find that there exist a few center nodes and small skeletons for most oscillations. Complicated and seemingly random oscillatory patterns can be viewed as well-organized target waves propagating from center nodes along the shortest paths, and the shortest loops passing through both the center nodes and their driver nodes play the role of oscillation sources. Analyzing simple skeletons we are able to understand and predict various essential properties of the oscillations and effectively modulate the oscillations. These methods and results will give insights into pattern formation in complex networks, and provide suggestive ideas for studying and controlling oscillations in neural networks.
We study the effect of learning dynamics on network topology. A network of discrete dynamical systems is considered for this purpose and the coupling strengths are made to evolve according to a temporal learning rule that is based on the paradigm of spike-time-dependent plasticity. This incorporates necessary competition between different edges. The final network we obtain is robust and has a broad degree distribution.