Two results on character codegrees


Abstract in English

Let $G$ be a finite group and $mathrm{Irr}(G)$ be the set of irreducible characters of $G$. The codegree of an irreducible character $chi$ of the group $G$ is defined as $mathrm{cod}(chi)=|G:mathrm{ker}(chi)|/chi(1)$. In this paper, we study two topics related to the character codegrees. Let $sigma^c(G)$ be the maximal integer $m$ such that there is a member in $mathrm{cod}(G)$ having $m$ distinct prime divisors, where $mathrm{cod}(G)={mathrm{cod}(chi)|chiin mathrm{Irr}(G)}$. One is related to the codegree version of the Hupperts $rho$-$sigma$ conjecture and we obtain the best possible bound for $|pi(G)|$ under the condition $sigma^c(G) = 2,3,$ and $4$ respectively. The other is related to the prime graph of character codegrees and we show that the codegree prime graphs of several classes of groups can be characterized only by graph theoretical terms.

Download