No Arabic abstract
Delay mass-action systems provide a model of chemical kinetics when past states influence the current dynamics. In this work, we provide a graph-theoretic condition for delay stability, i.e., linear stability independent of both rate constants and delay parameters. In particular, the result applies when the system has no delay, implying asymptotic stability for the ODE system. The graph-theoretic condition is about cycles in the directed species-reaction graph of the network, which encodes how different species in the system interact.
Delay differential equations are used as a model when the effect of past states has to be taken into account. In this work we consider delay models of chemical reaction networks with mass action kinetics. We obtain a sufficient condition for absolute delay stability of equilibrium concentrations, i.e., local asymptotic stability independent of the delay parameters. Several interesting examples on sequestration networks with delays are presented.
In this paper we discuss the question of how to decide when a general chemical reaction system is incapable of admitting multiple equilibria, regardless of parameter values such as reaction rate constants, and regardless of the type of chemical kinetics, such as mass-action kinetics, Michaelis-Menten kinetics, etc. Our results relate previously described linear algebraic and graph-theoretic conditions for injectivity of chemical reaction systems. After developing a translation between the two formalisms, we show that a graph-theoretic test developed earlier in the context of systems with mass action kinetics, can be applied to reaction systems with arbitrary kinetics. The test, which is easy to implement algorithmically, and can often be decided without the need for any computation, rules out the possibility of multiple equilibria for the systems in question.
Linear scalar differential equations with distributed delays appear in the study of the local stability of nonlinear differential equations with feedback, which are common in biology and physics. Negative feedback loops tend to promote oscillations around steady states, and their stability depends on the particular shape of the delay distribution. Since in applications the mean delay is often the only reliable information available about the distribution, it is desirable to find conditions for stability that are independent from the shape of the distribution. We show here that for a given mean delay, the linear equation with distributed delay is asymptotically stable if the associated differential equation with a discrete delay is asymptotically stable. We illustrate this criterion on a compartment model of hematopoietic cell dynamics to obtain sufficient conditions for stability.
This paper studies the graph-theoretic conditions for stability of positive monotone systems. Using concepts from input-to-state stability and network small-gain theory, we first establish necessary and sufficient conditions for the stability of linear positive systems described by Metzler matrices. Specifically, we derive two sets of stability conditions based on two forms of input-to-state stability gains for Metzler systems, namely max-interconnection gains and sum-interconnection gains. Based on the max-interconnection gains, we show that the cyclic small-gain theorem becomes necessary and sufficient for the stability of Metzler systems; based on the sum-interconnection gains, we obtain novel graph-theoretic conditions for the stability of Metzler systems. All these conditions highlight the role of cycles in the interconnection graph and unveil how the structural properties of the graph affect stability. Finally, we extend our results to the nonlinear monotone system and obtain similar sufficient conditions for global asymptotic stability.
Many dynamic processes involve time delays, thus their dynamics are governed by delay differential equations (DDEs). Studying the stability of dynamic systems is critical, but analyzing the stability of time-delay systems is challenging because DDEs are infinite-dimensional. We propose a new approach to quickly generate stability charts for DDEs using continuation of characteristic roots (CCR). In our CCR method, the roots of the characteristic equation of a DDE are written as implicit functions of the parameters of interest, and the continuation equations are derived in the form of ordinary differential equations (ODEs). Numerical continuation is then employed to determine the characteristic roots at all points in a parametric space; the stability of the original DDE can then be easily determined. A key advantage of the proposed method is that a system of linearly independent ODEs is solved rather than the typical strategy of solving a large eigenvalue problem at each grid point in the domain. Thus, the CCR method significantly reduces the computational effort required to determine the stability of DDEs. As we demonstrate with several examples, the CCR method generates highly accurate stability charts, and does so up to 10 times faster than the Galerkin approximation method.