The equivariant Hilbert series of the canonical ring of Fermat curves


Abstract in English

We consider a Fermat curve $F_n:x^n+y^n+z^n=1$ over an algebraically closed field $k$ of characteristic $pgeq0$ and study the action of the automorphism group $G=left(mathbb{Z}/nmathbb{Z}timesmathbb{Z}/nmathbb{Z}right)rtimes S_3$ on the canonical ring $R=bigoplus H^0(F_n,Omega_{F_n}^{otimes m})$ when $p>3$, $p mid n$ and $n-1$ is not a power of $p$. In particular, we explicitly determine the classes $[H^0(F_n,Omega_{F_n}^{otimes m})]$ in the Grothendieck group $K_0(G,k)$ of finitely generated $k[G]$-modules, describe the respective equivariant Hilbert series $H_{R,G}(t)$ as a rational function, and use our results to write a program in Sage that computes $H_{R,G}(t)$ for an arbitrary Fermat curve.

Download