The $PeV$ cosmogenic neutrino is still interesting argument. Since cosmogenic neutrinos interact weakly with matter, the detection of their direction will precisely point out the source in the space. In this paper, we show the results of the simulation of tau lepton air showers induced by high energy neutrinos detected by an array of stations designed to use the Earth Skimming method improved by the mountain chain screen strategy. Both track time stamp and position information of the stations on the array are used to reconstruct the shower to estimate the direction and the number of events. The array studied consists of 640 stations ($40 times 16$) spread over an area of $0.6,km^2$ starting from $1500,m$ above the sea level (a.s.l.) on $30^{o}$ inclined plane of the mountain. When we extrapolate to 3 years and 10 $km^2$ we estimate 13 tau lepton events in energy interval of 10 PeV to 1000 PeV detected using the present upper limits of tau neutrino flux.