Weak equilibriums for time-inconsistent stopping control problems, with applications to investment-withdrawal decision model


Abstract in English

This paper considers time-inconsistent problems when control and stopping strategies are required to be made simultaneously (called stopping control problems by us). We first formulate the time-inconsistent stopping control problems under general multi-dimensional controlled diffusion model and propose a formal definition of their equilibriums. We show that an admissible pair $(hat{u},C)$ of control-stopping policy is equilibrium if and only if the axillary function associated to it solves the extended HJB system. We provide almost equivalent conditions to the boundary term of this extended HJB system, which is related to the celebrated smooth fitting principles. As applications of our theoretical results, we develop an investment-withdrawal decision model for time-inconsistent decision makers in infinite time horizon. We provide two concrete examples, one of which includes constant proportion investment with one side threshold withdrawal strategy as equilibrium; in another example, all strategies with constant proportion investment are proved to be irrational, no matter what the withdrawal strategy is.

Download