Do you want to publish a course? Click here

Numerical hardware-efficient variational quantum simulation of a soliton solution

84   0   0.0 ( 0 )
 Added by Dmitry Yudin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Implementing variational quantum algorithms with noisy intermediate-scale quantum machines of up to a hundred qubits is nowadays considered as one of the most promising routes towards achieving a quantum practical advantage. In multiqubit circuits, running advanced quantum algorithms is hampered by the noise inherent to quantum gates which distances us from the idea of universal quantum computing. Based on a one-dimensional quantum spin chain with competing symmetric and asymmetric pairwise exchange interactions, herein we discuss the capabilities of quantum algorithms with special attention paid to a hardware-efficient variational eigensolver. A delicate interplay between magnetic interactions allows one to stabilize a chiral state that destroys the homogeneity of magnetic ordering, thus making this solution highly entangled. Quantifying entanglement in terms of quantum concurrence, we argue that, while being capable of correctly reproducing a uniform magnetic configuration, the hardware-efficient ansatz meets difficulties in providing a detailed description to a noncollinear magnetic structure. The latter naturally limits the application range of variational quantum computing to solve quantum simulation tasks.



rate research

Read More

Quantum computers can be used to address molecular structure, materials science and condensed matter physics problems, which currently stretch the limits of existing high-performance computing resources. Finding exact numerical solutions to these interacting fermion problems has exponential cost, while Monte Carlo methods are plagued by the fermionic sign problem. These limitations of classical computational methods have made even few-atom molecular structures problems of practical interest for medium-sized quantum computers. Yet, thus far experimental implementations have been restricted to molecules involving only Period I elements. Here, we demonstrate the experimental optimization of up to six-qubit Hamiltonian problems with over a hundred Pauli terms, determining the ground state energy for molecules of increasing size, up to BeH2. This is enabled by a hardware-efficient variational quantum eigensolver with trial states specifically tailored to the available interactions in our quantum processor, combined with a compact encoding of fermionic Hamiltonians and a robust stochastic optimization routine. We further demonstrate the flexibility of our approach by applying the technique to a problem of quantum magnetism. Across all studied problems, we find agreement between experiment and numerical simulations with a noisy model of the device. These results help elucidate the requirements for scaling the method to larger systems, and aim at bridging the gap between problems at the forefront of high-performance computing and their implementation on quantum hardware.
324 - Ji Liu , Huiyang Zhou 2021
Quantum computing has noteworthy speedup over classical computing by taking advantage of quantum parallelism, i.e., the superposition of states. In particular, quantum search is widely used in various computationally hard problems. Grovers search algorithm finds the target element in an unsorted database with quadratic speedup than classical search and has been proved to be optimal in terms of the number of queries to the database. The challenge, however, is that Grovers search algorithm leads to high numbers of quantum gates, which make it infeasible for the Noise-Intermediate-Scale-Quantum (NISQ) computers. In this paper, we propose a novel hardware efficient quantum search algorithm to overcome this challenge. Our key idea is to replace the global diffusion operation with low-cost local diffusions. Our analysis shows that our algorithm has similar oracle complexity to the original Grovers search algorithm while significantly reduces the circuit depth and gate count. The circuit cost reduction leads to a remarkable improvement in the system success rates, paving the way for quantum search on NISQ machines.
102 - Xiao Yuan , Suguru Endo , Qi Zhao 2018
The variational method is a versatile tool for classical simulation of a variety of quantum systems. Great efforts have recently been devoted to its extension to quantum computing for efficiently solving static many-body problems and simulating real and imaginary time dynamics. In this work, we first review the conventional variational principles, including the Rayleigh-Ritz method for solving static problems, and the Dirac and Frenkel variational principle, the McLachlans variational principle, and the time-dependent variational principle, for simulating real time dynamics. We focus on the simulation of dynamics and discuss the connections of the three variational principles. Previous works mainly focus on the unitary evolution of pure states. In this work, we introduce variational quantum simulation of mixed states under general stochastic evolution. We show how the results can be reduced to the pure state case with a correction term that takes accounts of global phase alignment. For variational simulation of imaginary time evolution, we also extend it to the mixed state scenario and discuss variational Gibbs state preparation. We further elaborate on the design of ansatz that is compatible with post-selection measurement and the implementation of the generalised variational algorithms with quantum circuits. Our work completes the theory of variational quantum simulation of general real and imaginary time evolution and it is applicable to near-term quantum hardware.
Variational quantum algorithms have been proposed to solve static and dynamic problems of closed many-body quantum systems. Here we investigate variational quantum simulation of three general types of tasks---generalised time evolution with a non-Hermitian Hamiltonian, linear algebra problems, and open quantum system dynamics. The algorithm for generalised time evolution provides a unified framework for variational quantum simulation. In particular, we show its application in solving linear systems of equations and matrix-vector multiplications by converting these algebraic problems into generalised time evolution. Meanwhile, assuming a tensor product structure of the matrices, we also propose another variational approach for these two tasks by combining variational real and imaginary time evolution. Finally, we introduce variational quantum simulation for open system dynamics. We variationally implement the stochastic Schrodinger equation, which consists of dissipative evolution and stochastic jump processes. We numerically test the algorithm with a six-qubit 2D transverse field Ising model under dissipation.
Solving finite-temperature properties of quantum many-body systems is generally challenging to classical computers due to their high computational complexities. In this article, we present experiments to demonstrate a hybrid quantum-classical simulation of thermal quantum states. By combining a classical probabilistic model and a 5-qubit programmable superconducting quantum processor, we prepare Gibbs states and excited states of Heisenberg XY and XXZ models with high fidelity and compute thermal properties including the variational free energy, energy, and entropy with a small statistical error. Our approach combines the advantage of classical probabilistic models for sampling and quantum co-processors for unitary transformations. We show that the approach is scalable in the number of qubits, and has a self-verifiable feature, revealing its potentials in solving large-scale quantum statistical mechanics problems on near-term intermediate-scale quantum computers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا