No Arabic abstract
Contract element extraction (CEE) is the novel task of automatically identifying and extracting legally relevant elements such as contract dates, payments, and legislation references from contracts. Automatic methods for this task view it as a sequence labeling problem and dramatically reduce human labor. However, as contract genres and element types may vary widely, a significant challenge for this sequence labeling task is how to transfer knowledge from one domain to another, i.e., cross-domain CEE. Cross-domain CEE differs from cross-domain named entity recognition (NER) in two important ways. First, contract elements are far more fine-grained than named entities, which hinders the transfer of extractors. Second, the extraction zones for cross-domain CEE are much larger than for cross-domain NER. As a result, the contexts of elements from different domains can be more diverse. We propose a framework, the Bi-directional Feedback cLause-Element relaTion network (Bi-FLEET), for the cross-domain CEE task that addresses the above challenges. Bi-FLEET has three main components: (1) a context encoder, (2) a clause-element relation encoder, and (3) an inference layer. To incorporate invariant knowledge about element and clause types, a clause-element graph is constructed across domains and a hierarchical graph neural network is adopted in the clause-element relation encoder. To reduce the influence of context variations, a multi-task framework with a bi-directional feedback scheme is designed in the inference layer, conducting both clause classification and element extraction. The experimental results over both cross-domain NER and CEE tasks show that Bi-FLEET significantly outperforms state-of-the-art baselines.
Open relation extraction aims to cluster relation instances referring to the same underlying relation, which is a critical step for general relation extraction. Current OpenRE models are commonly trained on the datasets generated from distant supervision, which often results in instability and makes the model easily collapsed. In this paper, we revisit the procedure of OpenRE from a causal view. By formulating OpenRE using a structural causal model, we identify that the above-mentioned problems stem from the spurious correlations from entities and context to the relation type. To address this issue, we conduct emph{Element Intervention}, which intervenes on the context and entities respectively to obtain the underlying causal effects of them. We also provide two specific implementations of the interventions based on entity ranking and context contrasting. Experimental results on unsupervised relation extraction datasets show that our methods outperform previous state-of-the-art methods and are robust across different datasets.
This paper describes our submission for the SemEval 2018 Task 7 shared task on semantic relation extraction and classification in scientific papers. We extend the end-to-end relation extraction model of (Miwa and Bansal) with enhancements such as a character-level encoding attention mechanism on selecting pretrained concept candidate embeddings. Our official submission ranked the second in relation classification task (Subtask 1.1 and Subtask 2 Senerio 2), and the first in the relation extraction task (Subtask 2 Scenario 1).
In order to assist security analysts in obtaining information pertaining to their network, such as novel vulnerabilities, exploits, or patches, information retrieval methods tailored to the security domain are needed. As labeled text data is scarce and expensive, we follow developments in semi-supervised Natural Language Processing and implement a bootstrapping algorithm for extracting security entities and their relationships from text. The algorithm requires little input data, specifically, a few relations or patterns (heuristics for identifying relations), and incorporates an active learning component which queries the user on the most important decisions to prevent drifting from the desired relations. Preliminary testing on a small corpus shows promising results, obtaining precision of .82.
A capsule is a group of neurons, whose activity vector represents the instantiation parameters of a specific type of entity. In this paper, we explore the capsule networks used for relation extraction in a multi-instance multi-label learning framework and propose a novel neural approach based on capsule networks with attention mechanisms. We evaluate our method with different benchmarks, and it is demonstrated that our method improves the precision of the predicted relations. Particularly, we show that capsule networks improve multiple entity pairs relation extraction.
The advancement of biomedical named entity recognition (BNER) and biomedical relation extraction (BRE) researches promotes the development of text mining in biological domains. As a cornerstone of BRE, robust BNER system is required to identify the mentioned NEs in plain texts for further relation extraction stage. However, the current BNER corpora, which play important roles in these tasks, paid less attention to achieve the criteria for BRE task. In this study, we present Revised JNLPBA corpus, the revision of JNLPBA corpus, to broaden the applicability of a NER corpus from BNER to BRE task. We preserve the original entity types including protein, DNA, RNA, cell line and cell type while all the abstracts in JNLPBA corpus are manually curated by domain experts again basis on the new annotation guideline focusing on the specific NEs instead of general terms. Simultaneously, several imperfection issues in JNLPBA are pointed out and made up in the new corpus. To compare the adaptability of different NER systems in Revised JNLPBA and JNLPBA corpora, the F1-measure was measured in three open sources NER systems including BANNER, Gimli and NERSuite. In the same circumstance, all the systems perform average 10% better in Revised JNLPBA than in JNLPBA. Moreover, the cross-validation test is carried out which we train the NER systems on JNLPBA/Revised JNLPBA corpora and access the performance in both protein-protein interaction extraction (PPIE) and biomedical event extraction (BEE) corpora to confirm that the newly refined Revised JNLPBA is a competent NER corpus in biomedical relation application. The revised JNLPBA corpus is freely available at iasl-btm.iis.sinica.edu.tw/BNER/Content/Revised_JNLPBA.zip.