Do you want to publish a course? Click here

Design of a frequency-independent optic axis Pancharatnam-based achromatic half-wave plate

255   0   0.0 ( 0 )
 Added by Kunimoto Komatsu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Pancharatnam-based achromatic half-wave plates (AHWP) achieve high polarization efficiency over a broad waveband. These AWHPs generally contain a property whereby the optic axis is dependent on the electromagnetic frequency of the incident radiation. When the AHWP is used to measure incident polarized radiation with a finite detection bandwidth, this frequency dependence causes an uncertainty in the determination of the polarization angle due to the limited knowledge of the shape of the source spectrum and detection band. To mitigate this problem, we propose new designs of the AHWP which eliminate the frequency dependence of the optic axis over the bandwidth whilst maintaining high modulation efficiency. We carried out this optimization by tuning the relative angles among the individual half-wave plates of the five and nine layer AHWPs. The optimized set of relative angles achieves a frequency-independent optic axis over the fractional bandwidth, a bandwidth over which polarization efficiency is greater than 0.9, of 1.3 and 1.5 for the five and nine layer AHWPs, respectively. We also study the susceptibility of the alignment accuracy on the polarization efficiency and the frequency dependence of the optic axis, which provides a design guidance for each application.



rate research

Read More

We have constructed an achromatic half wave plate (AHWP) suitable for the millimeter wavelength band. The AHWP was made from a stack of three sapphire a-cut birefringent plates with the optical axes of the middle plate rotated by 50.5 degrees with respect to the aligned axes of the other plates. The measured modulation efficiency of the AHWP at 110 GHz was $96 pm 1.5$%. In contrast, the modulation efficiency of a single sapphire plate of the same thickness was $43 pm 4$%. Both results are in close agreement with theoretical predictions. The modulation efficiency of the AHWP was constant as a function of incidence angles between 0 and 15 degrees. We discuss design parameters of an AHWP in the context of astrophysical broad band polarimetry at the millimeter wavelength band.
A cryogenic achromatic half-wave plate (HWP) for submillimetre astronomical polarimetry has been designed, manufactured, tested, and deployed in the Balloon-borne Large-Aperture Submillimeter Telescope for Polarimetry (BLASTPol). The design is based on the five-slab Pancharatnam recipe and it works in the wavelength range 200-600 micron, making it the broadest-band HWP built to date at (sub)millimetre wavelengths. The frequency behaviour of the HWP has been fully characterised at room and cryogenic temperatures with incoherent radiation from a polarising Fourier transform spectrometer. We develop a novel empirical model, complementary to the physical and analytical ones available in the literature, that allows us to recover the HWP Mueller matrix and phase shift as a function of frequency and extrapolated to 4K. We show that most of the HWP non-idealities can be modelled by quantifying one wavelength-dependent parameter, the position of the HWP equivalent axes, which is then readily implemented in a map-making algorithm. We derive this parameter for a range of spectral signatures of input astronomical sources relevant to BLASTPol, and provide a benchmark example of how our method can yield improved accuracy on measurements of the polarisation angle on the sky at submillimetre wavelengths.
Inflation Gravity Waves B-Modes polarization detection is the ultimate goal of modern large angular scale cosmic microwave background (CMB) experiments around the world. A big effort is undergoing with the deployment of many ground-based, balloon-borne and satellite experiments using different methods to separate this faint polarized component from the incoming radiation. One of the largely used technique is the Stokes Polarimetry that uses a rotating half-wave plate (HWP) and a linear polarizer to separate and modulate the polarization components with low residual cross-polarization. This paper describes the QUBIC Stokes Polarimeter highlighting its design features and its performances. A common systematic with these devices is the generation of large spurious signals synchronous with the rotation and proportional to the emissivity of the optical elements. A key feature of the QUBIC Stokes Polarimeter is to operate at cryogenic temperature in order to minimize this unwanted component. Moving efficiently this large optical element at low temperature constitutes a big engineering challenge in order to reduce friction power dissipation. Big attention has been given during the designing phase to minimize the differential thermal contractions between parts. The rotation is driven by a stepper motor placed outside the cryostat to avoid thermal load dissipation at cryogenic temperature. The tests and the results presented in this work show that the QUBIC polarimeter can easily achieve a precision below 0.1{deg} in positioning simply using the stepper motor precision and the optical absolute encoder. The rotation induces only few mK of extra power load on the second cryogenic stage (~ 8 K).
We describe the development of an ambient-temperature continuously-rotating half-wave plate (HWP) for study of the Cosmic Microwave Background (CMB) polarization by the POLARBEAR-2 (PB2) experiment. Rapid polarization modulation suppresses 1/f noise due to unpolarized atmospheric turbulence and improves sensitivity to degree-angular-scale CMB fluctuations where the inflationary gravitational wave signal is thought to exist. A HWP modulator rotates the input polarization signal and therefore allows a single polarimeter to measure both linear polarization states, eliminating systematic errors associated with differencing of orthogonal detectors. PB2 projects a 365-mm-diameter focal plane of 7,588 dichroic, 95/150 GHz transition-edge-sensor bolometers onto a 4-degree field of view that scans the sky at $sim$ 1 degree per second. We find that a 500-mm-diameter ambient-temperature sapphire achromatic HWP rotating at 2 Hz is a suitable polarization modulator for PB2. We present the design considerations for the PB2 HWP, the construction of the HWP optical stack and rotation mechanism, and the performance of the fully-assembled HWP instrument. We conclude with a discussion of HWP polarization modulation for future Simons Array receivers.
148 - C. Bao , B. Gold , C. Baccigalupi 2011
We study the impact of the spectral dependence of the linear polarization rotation induced by an achromatic half-wave plate on measurements of cosmic microwave background polarization in the presence of astrophysical foregrounds. We focus on the systematic effects induced on the measurement of inflationary gravitational waves by uncertainties in the polarization and spectral index of Galactic dust. We find that for the experimental configuration and noise levels of the balloon-borne EBEX experiment, which has three frequency bands centered at 150, 250, and 410 GHz, a crude dust subtraction process mitigates systematic effects to below detectable levels for 10% polarized dust and tensor to scalar ratio of as low as r = 0.01. We also study the impact of uncertainties in the spectral response of the instrument. With a top-hat model of the spectral response for each band, characterized by band-center and band-width, and with the same crude dust subtraction process, we find that these parameters need to be determined to within 1 and 0.8 GHz at 150 GHz; 9 and 2.0 GHz at 250 GHz; and 20 and 14 GHz at 410 GHz, respectively. The approach presented in this paper is applicable to other optical elements that exhibit polarization rotation as a function of frequency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا