Do you want to publish a course? Click here

Consistent Multiple Graph Embedding for Multi-View Clustering

86   0   0.0 ( 0 )
 Added by Yiming Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Graph-based multi-view clustering aiming to obtain a partition of data across multiple views, has received considerable attention in recent years. Although great efforts have been made for graph-based multi-view clustering, it remains a challenge to fuse characteristics from various views to learn a common representation for clustering. In this paper, we propose a novel Consistent Multiple Graph Embedding Clustering framework(CMGEC). Specifically, a multiple graph auto-encoder(M-GAE) is designed to flexibly encode the complementary information of multi-view data using a multi-graph attention fusion encoder. To guide the learned common representation maintaining the similarity of the neighboring characteristics in each view, a Multi-view Mutual Information Maximization module(MMIM) is introduced. Furthermore, a graph fusion network(GFN) is devised to explore the relationship among graphs from different views and provide a common consensus graph needed in M-GAE. By jointly training these models, the common latent representation can be obtained which encodes more complementary information from multiple views and depicts data more comprehensively. Experiments on three types of multi-view datasets demonstrate CMGEC outperforms the state-of-the-art clustering methods.



rate research

Read More

Graph-based multi-view clustering has become an active topic due to the efficiency in characterizing both the complex structure and relationship between multimedia data. However, existing methods have the following shortcomings: (1) They are inefficient or even fail for graph learning in large scale due to the graph construction and eigen-decomposition. (2) They cannot well exploit both the complementary information and spatial structure embedded in graphs of different views. To well exploit complementary information and tackle the scalability issue plaguing graph-based multi-view clustering, we propose an efficient multiple graph learning model via a small number of anchor points and tensor Schatten p-norm minimization. Specifically, we construct a hidden and tractable large graph by anchor graph for each view and well exploit complementary information embedded in anchor graphs of different views by tensor Schatten p-norm regularizer. Finally, we develop an efficient algorithm, which scales linearly with the data size, to solve our proposed model. Extensive experimental results on several datasets indicate that our proposed method outperforms some state-of-the-art multi-view clustering algorithms.
Hashing techniques, also known as binary code learning, have recently gained increasing attention in large-scale data analysis and storage. Generally, most existing hash clustering methods are single-view ones, which lack complete structure or complementary information from multiple views. For cluster tasks, abundant prior researches mainly focus on learning discrete hash code while few works take original data structure into consideration. To address these problems, we propose a novel binary code algorithm for clustering, which adopts graph embedding to preserve the original data structure, called (Graph-based Multi-view Binary Learning) GMBL in this paper. GMBL mainly focuses on encoding the information of multiple views into a compact binary code, which explores complementary information from multiple views. In particular, in order to maintain the graph-based structure of the original data, we adopt a Laplacian matrix to preserve the local linear relationship of the data and map it to the Hamming space. Considering different views have distinctive contributions to the final clustering results, GMBL adopts a strategy of automatically assign weights for each view to better guide the clustering. Finally, An alternating iterative optimization method is adopted to optimize discrete binary codes directly instead of relaxing the binary constraint in two steps. Experiments on five public datasets demonstrate the superiority of our proposed method compared with previous approaches in terms of clustering performance.
We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. However, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.
201 - Quanxue Gao , Wei Xia , Xinbo Gao 2021
Despite the impressive clustering performance and efficiency in characterizing both the relationship between data and cluster structure, existing graph-based multi-view clustering methods still have the following drawbacks. They suffer from the expensive time burden due to both the construction of graphs and eigen-decomposition of Laplacian matrix, and fail to explore the cluster structure of large-scale data. Moreover, they require a post-processing to get the final clustering, resulting in suboptimal performance. Furthermore, rank of the learned view-consensus graph cannot approximate the target rank. In this paper, drawing the inspiration from the bipartite graph, we propose an effective and efficient graph learning model for multi-view clustering. Specifically, our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm, which well characterizes both the spatial structure and complementary information embedded in graphs of different views. We learn view-consensus graph with adaptively weighted strategy and connectivity constraint such that the connected components indicates clusters directly. Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size. Extensive experimental results indicate that our method is superior to state-of-the-art methods.
In recent years, multi-view subspace clustering has achieved impressive performance due to the exploitation of complementary imformation across multiple views. However, multi-view data can be very complicated and are not easy to cluster in real-world applications. Most existing methods operate on raw data and may not obtain the optimal solution. In this work, we propose a novel multi-view clustering method named smoothed multi-view subspace clustering (SMVSC) by employing a novel technique, i.e., graph filtering, to obtain a smooth representation for each view, in which similar data points have similar feature values. Specifically, it retains the graph geometric features through applying a low-pass filter. Consequently, it produces a ``clustering-friendly representation and greatly facilitates the downstream clustering task. Extensive experiments on benchmark datasets validate the superiority of our approach. Analysis shows that graph filtering increases the separability of classes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا