Do you want to publish a course? Click here

Recursive sequences attached to modular representations of finite groups

157   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The core of a finite-dimensional modular representation $M$ of a finite group $G$ is its largest non-projective summand. We prove that the dimensions of the cores of $M^{otimes n}$ have algebraic Hilbert series when $M$ is Omega-algebraic, in the sense that the non-projective summands of $M^{otimes n}$ fall into finitely many orbits under the action of the syzygy operator $Omega$. Similarly, we prove that these dimension sequences are eventually linearly recursive when $M$ is what we term $Omega^{+}$-algebraic. This partially answers a conjecture by Benson and Symonds. Along the way, we also prove a number of auxiliary permanence results for linear recurrence under operations on multi-variable sequences.



rate research

Read More

We determine the multiplicities of irreducible summands in the symmetric and the exterior squares of hook representations of symmetric groups over an algebraically closed field of characteristic zero.
456 - Tobias Barthel 2021
We classify the localizing tensor ideals of the integral stable module category for any finite group $G$. This results in a generic classification of $mathbb{Z}[G]$-lattices of finite and infinite rank and globalizes the modular case established in celebrated work of Benson, Iyengar, and Krause. Further consequences include a verification of the generalized telescope conjecture in this context, a tensor product formula for integral cohomological support, as well as a generalization of Quillens stratification theorem for group cohomology. Our proof makes use of novel descent techniques for stratification in tensor-triangular geometry that are of independent interest.
Let $p$ be any prime. Let $P_n$ be a Sylow $p$-subgroup of the symmetric group $S_n$. Let $phi$ and $psi$ be linear characters of $P_n$ and let $N$ be the normaliser of $P_n$ in $S_n$. In this article we show that the inductions of $phi$ and $psi$ to $S_n$ are equal if, and only if, $phi$ and $psi$ are $N$--conjugate. This is an analogue for symmetric groups of a result of Navarro for $p$-solvable groups.
We develop a theory of Anosov representation of geometrically finite Fuchsian groups in SL(d,R) and show that cusped Hitchin representations are Borel Anosov in this sense. We establish analogues of many properties of traditional Anosov representations. In particular, we show that our Anosov representations are stable under type-preserving deformations and that their limit maps vary analytically. We also observe that our Anosov representations fit into the previous frameworks of relatively Anosov and relatively dominated representations developed by Kapovich-Leeb and Zhu.
Let $W$ denote a simply-laced Coxeter group with $n$ generators. We construct an $n$-dimensional representation $phi$ of $W$ over the finite field $F_2$ of two elements. The action of $phi(W)$ on $F_2^n$ by left multiplication is corresponding to a combinatorial structure extracted and generalized from Vogan diagrams. In each case W of types A, D and E, we determine the orbits of $F_2^n$ under the action of $phi(W)$, and find that the kernel of $phi$ is the center $Z(W)$ of $W.$
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا