No Arabic abstract
QED cascades in a strong electromagnetic field of optical range and arbitrary configuration are considered. A general expression for short-time dependence of the key electron quantum dynamical parameter is derived, allowing to generalize the effective threshold condition of QED cascade onset. The generalized theory is applied to selfsustained cascades in a single focused laser pulse. According to numerical simulations, if a GeV electron bunch is used as a seed, an ordinary cascade can be converted into the selfsustained one. As an application, it would be also possible to produce this way bright collimated photon beams with up to GeV photon energies.
Although the energies associated with nuclear reactions are due primarily to interactions involving nuclear forces, the rates and probabilities associated with those reactions are effectively governed by electromagnetic forces. Charges in the local environment can modulate the Coulomb barrier, and thereby change the rates of nuclear processes. Experiments are presented in which low-temperature electrons are attached to high-density rotating neutrals to form negative ions. The steady-state quiescent rotating plasma generated here lends itself to first prove the principle that low temperature systems can yield MeV fusion particles. It allows the use of high density of neutrals interacting with the wall to yield gain greater than unity. It also demonstrates that instabilities can be avoided with high neutral densities. Collective dynamic interactions within this steady-state quiescent plasma result in an arrangement of negative charges that lowers the effective Coulomb barrier to nuclear reactions at a solid wall of reactants. MeV alpha particles are synchronously observed with externally imposed pulses as evidence of fusion being enabled by Coulomb fields. Impacts on fusion, the source of energy in the universe, will be discussed.
Seeded self-modulation in a plasma can transform a long proton beam into a train of micro-bunches that can excite a strong wakefield over long distances, but this needs the plasma to have a certain density profile with a short-scale ramp up. For the parameters of the AWAKE experiment at CERN, we numerically study which density profiles are optimal if the self-modulation is seeded by a short electron bunch. With the optimal profiles, it is possible to freeze the wakefield at approximately half the wavebreaking level. High-energy electron bunches (160 MeV) are less efficient seeds than low-energy ones (18 MeV), because the wakefield of the former lasts longer than necessary for efficient seeding.
The dynamics of charged particles in electromagnetic fields is an essential component of understanding the most extreme environments in our Universe. In electromagnetic fields of sufficient magnitude, radiation emission dominates the particle motion and effects of nonlinear quantum electrodynamics (QED) are crucial, which triggers electron-positron pair cascades and counterintuitive particle-trapping phenomena. As a result of recent progress in laser technology, high-power lasers provide a platform to create and probe such fields in the laboratory. With new large-scale laser facilities on the horizon and the prospect of investigating these hitherto unexplored regimes, we review the basic physical processes of radiation reaction and QED in strong fields, how they are treated theoretically and in simulation, the new collective dynamics they unlock, recent experimental progress and plans, as well as possible applications for high-flux particle and radiation sources.
The Landau-Lifshitz equation provides an efficient way to account for the effects of radiation reaction without acquiring the non-physical solutions typical for the Lorentz-Abraham-Dirac equation. We solve the Landau-Lifshitz equation in its covariant four-vector form in order to control both the energy and momentum of radiating particle. Our study reveals that implicit time-symmetric collocation methods of the Runge-Kutta-Nystrom type are superior in both accuracy and better maintaining the mass-shell condition than their explicit counterparts. We carry out an extensive study of numerical accuracy by comparing the analytical and numerical solutions of the Landau-Lifshitz equation. Finally, we present the results of simulation of particles scattering by a focused laser pulse. Due to radiation reaction, particles are less capable for penetration into the focal region, as compared to the case of radiation reaction neglected. Our results are important for designing the forthcoming experiments with high intensity laser fields.
The radiation reaction radically influences the electron motion in an electromagnetic standing wave formed by two super-intense counter-propagating laser pulses. Depending on the laser intensity and wavelength, either classical or quantum mode of radiation reaction prevail, or both are strong. When radiation reaction dominates, electron motion evolves to limit cycles and strange attractors. This creates a new framework for high energy physics experiments on an interaction of energetic charged particle beams and colliding super-intense laser pulses.