Do you want to publish a course? Click here

The closeness of localised structures between the Ablowitz-Ladik lattice and Discrete Nonlinear Schrodinger equations II: Generalised AL and DNLS systems

60   0   0.0 ( 0 )
 Added by Dirk Hennig
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Ablowitz-Ladik system, being one of the few integrable nonlinear lattices, admits a wide class of analytical solutions, ranging from exact spatially localised solitons to rational solutions in the form of the spatiotemporally localised discrete Peregrine soliton. Proving a closeness result between the solutions of the Ablowitz-Ladik and a wide class of Discrete Nonlinear Schrodinger systems in a sense of a continuous dependence on their initial data, we establish that such small amplitude waveforms may be supported in the nonintegrable lattices, for significant large times. The nonintegrable systems exhibiting such behavior include a generalisation of the Ablowitz-Ladik system with a power-law nonlinearity and the Discrete Nonlinear Schrodinger with power-law and saturable nonlinearities. The outcome of numerical simulations illustrates in an excellent agreement with the analytical results the persistence of small amplitude Ablowitz-Ladik analytical solutions in all the nonintegrable systems considered in this work, with the most striking example being that of the Peregine soliton.



rate research

Read More

Complete integrability and multisoliton solutions are discussed for a multicomponent Ablowitz-Ladik system with branched dispersion relation. It is also shown that starting from a diagonal (in two-dimensions) completely integrable Ablowitz-Ladik equation, one can obtain all the results using a periodic reduction.
We discuss the finite-time collapse, also referred as blow-up, of the solutions of a discrete nonlinear Schr{o}dinger (DNLS) equation incorporating linear and nonlinear gain and loss. This DNLS system appears in many inherently discrete physical contexts as a more realistic generalization of the Hamiltonian DNLS lattice. By using energy arguments in finite and infinite dimensional phase spaces (as guided by the boundary conditions imposed), we prove analytical upper and lower bounds for the collapse time, valid for both the defocusing and focusing cases of the model. In addition, the existence of a critical value in the linear loss parameter is underlined, separating finite time-collapse from energy decay. The numerical simulations, performed for a wide class of initial data, not only verified the validity of our bounds, but also revealed that the analytical bounds can be useful in identifying two distinct types of collapse dynamics, namely, extended or localized. Pending on the discreteness /amplitude regime, the system exhibits either type of collapse and the actual blow-up times approach, and in many cases are in excellent agreement, with the upper or the lower bound respectively. When these times lie between the analytical bounds, they are associated with a nontrivial mixing of the above major types of collapse dynamics, due to the corroboration of defocusing/focusing effects and energy gain/loss, in the presence of discreteness and nonlinearity.
76 - T. Congy , G.A. El , M.A. Hoefer 2018
The nonlinear Schrodinger (NLS) equation and the Whitham modulation equations both describe slowly varying, locally periodic nonlinear wavetrains, albeit in differing amplitude-frequency domains. In this paper, we take advantage of the overlapping asymptotic regime that applies to both the NLS and Whitham modulation descriptions in order to develop a universal analytical description of dispersive shock waves (DSWs) generated in Riemann problems for a broad class of integrable and non-integrable nonlinear dispersive equations. The proposed method extends DSW fitting theory that prescribes the motion of a DSWs edges into the DSWs interior, i.e., this work reveals the DSW structure. Our approach also provides a natural framework in which to analyze DSW stability. We consider several representative, physically relevant examples that illustrate the efficacy of the developed general theory. Comparisons with direct numerical simulations show that inclusion of higher order terms in the NLS equation enables a remarkably accurate description of the DSW structure in a broad region that extends from the harmonic, small amplitude edge.
We construct a local tri-Hamiltonian structure of the Ablowitz-Ladik hierarchy, and compute the central invariants of the associated bihamiltonian structures. We show that the central invariants of one of the bihamiltonian structures are equal to 1/24, and the dispersionless limit of this bihamiltonian structure coincides with the one that is defined on the jet space of the Frobenius manifold associated with the Gromov-Witten invariants of local CP1. This result provides support for the validity of Brinis conjecture on the relation of these Gromov-Witten invariants with the Ablowitz-Ladik hierarchy.
We investigate the dynamical behavior of continuous and discrete Schrodinger systems exhibiting parity-time (PT) invariant nonlinearities. We show that such equations behave in a fundamentally different fashion than their nonlinear Schrodinger counterparts. In particular, the PT-symmetric nonlinear Schrodinger equation can simultaneously support both bright and dark soliton solutions. In addition, we study a two-element discretized version of this PT nonlinear Schrodinger equation. By obtaining the underlying invariants, we show that this system is fully integrable and we identify the PT-symmetry breaking conditions. This arrangement is unique in the sense that the exceptional points are fully dictated by the nonlinearity itself.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا