Do you want to publish a course? Click here

Observation of electrically tunable Feshbach resonances in twisted bilayer semiconductors

72   0   0.0 ( 0 )
 Added by Ido Schwartz
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Moire superlattices in twisted transition metal dichalcogenide bilayers have emerged as a rich platform for exploring strong correlations using optical spectroscopy. Despite observation of rich Mott-Wigner physics stemming from an interplay between the periodic potential and Coulomb interactions, the absence of tunnel coupling induced hybridization of electronic states ensured a classical layer degree of freedom in these experiments. Here, we investigate a MoSe$_2$ homobilayer structure where inter-layer coherent tunnelling and layer-selective optical transitions allow for electric field controlled manipulation and measurement of the layer-pseudospin of the ground-state holes. A striking example of qualitatively new phenomena in this system is our observation of an electrically tunable 2D Feshbach resonance in exciton-hole scattering, which allows us to control the strength of interactions between excitons and holes located in different layers. Our findings enable hitherto unexplored possibilities for optical investigation of many-body physics, as well as realization of degenerate Bose-Fermi mixtures with tunable interactions, without directly exposing the itinerant fermions to light fields.



rate research

Read More

Feshbach resonances are an invaluable tool in atomic physics, enabling precise control of interactions and the preparation of complex quantum phases of matter. Here, we theoretically analyze a solid-state analogue of a Feshbach resonance in two dimensional semiconductor heterostructures. In the presence of inter-layer electron tunneling, the scattering of excitons and electrons occupying different layers can be resonantly enhanced by tuning an applied electric field. The emergence of an inter-layer Feshbach molecule modifies the optical excitation spectrum, and can be understood in terms of Fermi polaron formation. We discuss potential implications for the realization of correlated Bose-Fermi mixtures in bilayer semiconductors.
Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent properties by exploiting the resulting geometric moir{e} superlattice. Such superlattices are known to host bulk valley currents at tiny angles ($alphaapprox 0.3 ^circ$) and flat bands at magic angles ($alpha approx 1^circ$). We show that tuning the twist angle to $alpha^*approx 0.8^circ$ generates flat bands away from charge neutrality with a triangular superlattice periodicity. When doped with $pm 6$ electrons per moire cell, these bands are half-filled and electronic interactions produce a symmetry-broken ground state (Stoner instability) with spin-polarized regions that order ferromagnetically. Application of an interlayer electric field breaks inversion symmetry and introduces valley-dependent dispersion that quenches the magnetic order. With these results, we propose a solid-state platform that realizes electrically tunable strong correlations.
The possibility of triggering correlated phenomena by placing a singularity of the density of states near the Fermi energy remains an intriguing avenue towards engineering the properties of quantum materials. Twisted bilayer graphene is a key material in this regard because the superlattice produced by the rotated graphene layers introduces a van Hove singularity and flat bands near the Fermi energy that cause the emergence of numerous correlated phases, including superconductivity. While the twist angle-dependence of these properties has been explored, direct demonstration of electrostatic control of the superlattice bands over a wide energy range has, so far, been critically missing. This work examines a functional twisted bilayer graphene device using in-operando angle-resolved photoemission with a nano-focused light spot. A twist angle of 12.2$^{circ}$ is selected such that the superlattice Brillouin zone is sufficiently large to enable identification of van Hove singularities and flat band segments in momentum space. The doping dependence of these features is extracted over an energy range of 0.4 eV, expanding the combinations of twist angle and doping where they can be placed at the Fermi energy and thereby induce new correlated electronic phases in twisted bilayer graphene.
Recent experiments have measured local uniaxial strain fields in twisted bilayer graphene (TBG). Our calculations found that the finite Berry curvature generated by breaking the sublattice symmetry and the band proximity between narrow bands in these TBG induces a giant Berry dipole of order 10,nm or larger. The large Berry dipole leads to transverse topological non-linear charge currents which dominates over the linear bulk valley current at experimentally accessible crossover in-plane electric field of $sim 0.1 {rm mV} / mu rm{m}$. This anomalous Hall effect, due to Berry dipole, is strongly tunable by the strain parameters, electron fillings, gap size, and temperature.
We investigate the band structure of twisted monolayer-bilayer graphene (tMBG), or twisted graphene on bilayer graphene (tGBG), as a function of twist angles and perpendicular electric fields in search of optimum conditions for achieving isolated nearly flat bands. Narrow bandwidths comparable or smaller than the effective Coulomb energies satisfying $U_{textrm{eff}} /W gtrsim 1$ are expected for twist angles in the range of $0.3^{circ} sim 1.5^{circ}$, more specifically in islands around $theta sim 0.5^{circ}, , 0.85^{circ}, ,1.3^{circ}$ for appropriate perpendicular electric field magnitudes and directions. The valley Chern numbers of the electron-hole asymmetric bands depend intrinsically on the details of the hopping terms in the bilayer graphene, and extrinsically on factors like electric fields or average staggered potentials in the graphene layer aligned with the contacting hexagonal boron nitride substrate. This tunability of the band isolation, bandwidth, and valley Chern numbers makes of tMBG a more versatile system than twisted bilayer graphene for finding nearly flat bands prone to strong correlations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا