No Arabic abstract
Stellar kinematics is a powerful tool for understanding the formation process of stellar associations. Here, we present a kinematic study of the young stellar population in the Rosette nebula using the recent Gaia data and high-resolution spectra. We first isolate member candidates using the published mid-infrared photometric data and the list of X-ray sources. A total of 403 stars with similar parallaxes and proper motions are finally selected as members. The spatial distribution of the members shows that this star-forming region is highly substructured. The young open cluster NGC 2244 in the center of the nebula has a pattern of radial expansion and rotation. We discuss its implication on the cluster formation, e.g., monolithic cold collapse or hierarchical assembly. On the other hand, we also investigate three groups located around the border of the H II bubble. The western group seems to be spatially correlated with the adjacent gas structure, but their kinematics is not associated with that of the gas. The southern group does not show any systematic motion relative to NGC 2244. These two groups might be spontaneously formed in filaments of a turbulent cloud. The eastern group is spatially and kinematically associated with the gas pillar receding away from NGC 2244. This group might be formed by feedback from massive stars in NGC 2244. Our results suggest that the stellar population in the Rosette Nebula may form through three different processes: the expansion of stellar clusters, hierarchical star formation in turbulent clouds, and feedback-driven star formation.
Using Spitzer Space Telescope and Chandra X-ray Observatory data, we identify YSOs in the Rosette Molecular Cloud (RMC). By being able to select cluster members and classify them into YSO types, we are able to track the progression of star formation locally within the cluster environments and globally within the cloud. We employ nearest neighbor method (NNM) analysis to explore the density structure of the clusters and YSO ratio mapping to study age progressions in the cloud. We find a relationship between the YSO ratios and extinction which suggests star formation occurs preferentially in the densest parts of the cloud and that the column density of gas rapidly decreases as the region evolves. This suggests rapid removal of gas may account for the low star formation efficiencies observed in molecular clouds. We find that the overall age spread across the RMC is small. Our analysis suggests that star formation started throughout the complex around the same time. Age gradients in the cloud appear to be localized and any effect the HII region has on the star formation history is secondary to that of the primordial collapse of the cloud.
Stellar Kinematic Groups are kinematical coherent groups of stars which may share a common origin. These groups spread through the Galaxy over time due to tidal effects caused by galactic rotation and disk heating, however the chemical information survives. The aim of chemical tagging is to show that abundances of every element in the analysis must be homogeneous between members. We have studied the case of the Hyades Supercluster in order to compile a reliable list of members (FGK stars) based on chemical tagging information and spectroscopic age determinations of this supercluster. This information has been derived from high-resolution echelle spectra obtained during our surveys of late-type stars. For a small subsample of the Hyades Supercluster, stellar atmospheric parameters (T_eff, log g, xi and [Fe/H]) have been determined using an automatic code which takes into account the sensibility of iron EWs measured in the spectra. We have derived absolute abundances consistent with galactic abundance trends reported in previous studies. The chemical tagging method has been applied with a carefully differential abundance analysis of each candidate member of the Hyades Supercluster, using a well-known member of the Hyades cluster as reference. A preliminary research has allowed us to find out which stars are members based on their differential abundances and spectroscopic ages.
The famous Rosette Nebula has an evacuated central cavity formed from the stellar winds ejected from the 2-6 million-year-old co-distant and co-moving central star cluster NGC 2244. However, with upper age estimates of less than 110,000 years, the central cavity is too young compared to NGC 2244 and existing models do not reproduce its properties. A new proper motion study herein using Gaia data reveals the ejection of the most massive star in the Rosette, HD46223, from NGC 2244 occurred 1.73 (+0.34,-0.25)Myr (1$sigma$ uncertainty) in the past. Assuming this ejection was at the birth of the most massive stars in NGC 2244, including the dominant centrally positioned HD46150, the age is set for the famous ionised region at more than ten times that derived for the cavity. Here, we are able to reproduce the structure of the Rosette Nebula, through simulation of mechanical stellar feedback from a 40M$_{odot}$ star in a thin sheet-like molecular cloud. We form the 135,000M$_{odot}$ cloud from thermally-unstable diffuse interstellar medium under the influence of a realistic background magnetic field with thermal/magnetic pressure equilibrium. Properties derived from a snapshot of the simulation at 1.5Myr, including cavity size, stellar age, magnetic field and resulting inclination to the line of sight, match those derived from observations. An elegant explanation is thus provided for the stark contrast in age estimates based on realistic diffuse ISM properties, molecular cloud formation and stellar wind feedback.
We explore scenarios for the dynamical ejection of stars BN and x from source I in the Kleinmann-Low nebula of the Orion Nebula Cluster (ONC), which is important for being the closest region of massive star formation. This ejection would cause source I to become a close binary or a merger product of two stars. We thus consider binary-binary encounters as the mechanism to produce this event. By running a large suite of $N$-body simulations, we find that it is nearly impossible to match the observations when using the commonly adopted masses for the participants, especially a source I mass of $7:{rm{M}}_odot$. The only way to recreate the event is if source I is more massive, i.e., $sim20:{rm{M}}_odot$. However, even in this case, the likelihood of reproducing the observed system is low. We discuss the implications of these results for understanding this important star-forming region.
We present Herschel images from the HOBYS key program of the Eagle Nebula (M16) in the far-infrared and sub-millimetre, using the PACS and SPIRE cameras at 70{mu}m, 160{mu}m, 250{mu}m, 350{mu}m, 500{mu}m. M16, home to the Pillars of Creation, is largely under the influence of the nearby NGC6611 high-mass star cluster. The Herschel images reveal a clear dust temperature gradient running away from the centre of the cavity carved by the OB cluster. We investigate the heating effect of NGC6611 on the entire M16 star-forming complex seen by Herschel including the diffuse cloud environment and the dense filamentary structures identified in this region. In addition, we interpret the three-dimensional geometry of M16 with respect to the nebula, its surrounding environment, and the NGC6611 cavity. The dust temperature and column density maps reveal a prominent eastern filament running north-south and away from the high-mass star-forming central region and the NGC6611 cluster, as well as a northern filament which extends around and away from the cluster. The dust temperature in each of these filaments decreases with increasing distance from the NGC6611 cluster, indicating a heating penetration depth of sim 10 pc in each direction in 3 - 6 times 10^{22} cm-2 column density filaments. We show that in high-mass star-forming regions OB clusters impact the temperature of future star-forming sites, modifying the initial conditions for collapse and effecting the evolutionary criteria of protostars developed from spectral energy distributions. Possible scenarios for the origin of the morphology seen in this region are discussed, including a western equivalent to the eastern filament, which was destroyed by the creation of the OB cluster and its subsequent winds and radiation.