No Arabic abstract
To promote the developments of object detection, tracking and counting algorithms in drone-captured videos, we construct a benchmark with a new drone-captured largescale dataset, named as DroneCrowd, formed by 112 video clips with 33,600 HD frames in various scenarios. Notably, we annotate 20,800 people trajectories with 4.8 million heads and several video-level attributes. Meanwhile, we design the Space-Time Neighbor-Aware Network (STNNet) as a strong baseline to solve object detection, tracking and counting jointly in dense crowds. STNNet is formed by the feature extraction module, followed by the density map estimation heads, and localization and association subnets. To exploit the context information of neighboring objects, we design the neighboring context loss to guide the association subnet training, which enforces consistent relative position of nearby objects in temporal domain. Extensive experiments on our DroneCrowd dataset demonstrate that STNNet performs favorably against the state-of-the-arts.
In the context of crowd counting, most of the works have focused on improving the accuracy without regard to the performance leading to algorithms that are not suitable for embedded applications. In this paper, we propose a lightweight convolutional neural network architecture to perform crowd detection and counting using fewer computer resources without a significant loss on count accuracy. The architecture was trained using the Bayes loss function to further improve its accuracy and then pruned to further reduce the computational resources used. The proposed architecture was tested over the USF-QNRF achieving a competitive Mean Average Error of 154.07 and a superior Mean Square Error of 241.77 while maintaining a competitive number of parameters of 0.067 Million. The obtained results suggest that the Bayes loss can be used with other architectures to further improve them and also the last convolutional layer provides no significant information and even encourage over-fitting at training.
Object detection and counting are related but challenging problems, especially for drone based scenes with small objects and cluttered background. In this paper, we propose a new Guided Attention Network (GANet) to deal with both object detection and counting tasks based on the feature pyramid. Different from the previous methods relying on unsupervised attention modules, we fuse different scales of feature maps by using the proposed weakly-supervised Background Attention (BA) between the background and objects for more semantic feature representation. Then, the Foreground Attention (FA) module is developed to consider both global and local appearance of the object to facilitate accurate localization. Moreover, the new data argumentation strategy is designed to train a robust model in various complex scenes. Extensive experiments on three challenging benchmarks (i.e., UAVDT, CARPK and PUCPR+) show the state-of-the-art detection and counting performance of the proposed method compared with existing methods.
Pig counting is a crucial task for large-scale pig farming, which is usually completed by human visually. But this process is very time-consuming and error-prone. Few studies in literature developed automated pig counting method. Existing methods only focused on pig counting using single image, and its accuracy is challenged by several factors, including pig movements, occlusion and overlapping. Especially, the field of view of a single image is very limited, and could not meet the requirements of pig counting for large pig grouping houses. To that end, we presented a real-time automated pig counting system in crowds using only one monocular fisheye camera with an inspection robot. Our system showed that it produces accurate results surpassing human. Our pipeline began with a novel bottom-up pig detection algorithm to avoid false negatives due to overlapping, occlusion and deformation of pigs. A deep convolution neural network (CNN) is designed to detect keypoints of pig body part and associate the keypoints to identify individual pigs. After that, an efficient on-line tracking method is used to associate pigs across video frames. Finally, a novel spatial-aware temporal response filtering (STRF) method is proposed to predict the counts of pigs, which is effective to suppress false positives caused by pig or camera movements or tracking failures. The whole pipeline has been deployed in an edge computing device, and demonstrated the effectiveness.
In real-world crowd counting applications, the crowd densities vary greatly in spatial and temporal domains. A detection based counting method will estimate crowds accurately in low density scenes, while its reliability in congested areas is downgraded. A regression based approach, on the other hand, captures the general density information in crowded regions. Without knowing the location of each person, it tends to overestimate the count in low density areas. Thus, exclusively using either one of them is not sufficient to handle all kinds of scenes with varying densities. To address this issue, a novel end-to-end crowd counting framework, named DecideNet (DEteCtIon and Density Estimation Network) is proposed. It can adaptively decide the appropriate counting mode for different locations on the image based on its real density conditions. DecideNet starts with estimating the crowd density by generating detection and regression based density maps separately. To capture inevitable variation in densities, it incorporates an attention module, meant to adaptively assess the reliability of the two types of estimations. The final crowd counts are obtained with the guidance of the attention module to adopt suitable estimations from the two kinds of density maps. Experimental results show that our method achieves state-of-the-art performance on three challenging crowd counting datasets.
Modern crowd counting methods usually employ deep neural networks (DNN) to estimate crowd counts via density regression. Despite their significant improvements, the regression-based methods are incapable of providing the detection of individuals in crowds. The detection-based methods, on the other hand, have not been largely explored in recent trends of crowd counting due to the needs for expensive bounding box annotations. In this work, we instead propose a new deep detection network with only point supervision required. It can simultaneously detect the size and location of human heads and count them in crowds. We first mine useful person size information from point-level annotations and initialize the pseudo ground truth bounding boxes. An online updating scheme is introduced to refine the pseudo ground truth during training; while a locally-constrained regression loss is designed to provide additional constraints on the size of the predicted boxes in a local neighborhood. In the end, we propose a curriculum learning strategy to train the network from images of relatively accurate and easy pseudo ground truth first. Extensive experiments are conducted in both detection and counting tasks on several standard benchmarks, e.g. ShanghaiTech, UCF_CC_50, WiderFace, and TRANCOS datasets, and the results show the superiority of our method over the state-of-the-art.