No Arabic abstract
In this work, we propose to extend a state-of-the-art multi-source localization system based on a convolutional recurrent neural network and Ambisonics signals. We significantly improve the performance of the baseline network by changing the layout between convolutional and pooling layers. We propose several configurations with more convolutional layers and smaller pooling sizes in-between, so that less information is lost across the layers, leading to a better feature extraction. In parallel, we test the systems ability to localize up to 3 sources, in which case the improved feature extraction provides the most significant boost in accuracy. We evaluate and compare these improved configurations on synthetic and real-world data. The obtained results show a quite substantial improvement of the multiple sound source localization performance over the baseline network.
From a machine learning perspective, the human ability localize sounds can be modeled as a non-parametric and non-linear regression problem between binaural spectral features of sound received at the ears (input) and their sound-source directions (output). The input features can be summarized in terms of the individuals head-related transfer functions (HRTFs) which measure the spectral response between the listeners eardrum and an external point in $3$D. Based on these viewpoints, two related problems are considered: how can one achieve an optimal sampling of measurements for training sound-source localization (SSL) models, and how can SSL models be used to infer the subjects HRTFs in listening tests. First, we develop a class of binaural SSL models based on Gaussian process regression and solve a emph{forward selection} problem that finds a subset of input-output samples that best generalize to all SSL directions. Second, we use an emph{active-learning} approach that updates an online SSL model for inferring the subjects SSL errors via headphones and a graphical user interface. Experiments show that only a small fraction of HRTFs are required for $5^{circ}$ localization accuracy and that the learned HRTFs are localized closer to their intended directions than non-individualized HRTFs.
Discriminative models for source separation have recently been shown to produce impressive results. However, when operating on sources outside of the training set, these models can not perform as well and are cumbersome to update. Classical methods like Non-negative Matrix Factorization (NMF) provide modular approaches to source separation that can be easily updated to adapt to new mixture scenarios. In this paper, we generalize NMF to develop end-to-end non-negative auto-encoders and demonstrate how they can be used for source separation. Our experiments indicate that these models deliver comparable separation performance to discriminative approaches, while retaining the modularity of NMF and the modeling flexibility of neural networks.
Identification and localization of sounds are both integral parts of computational auditory scene analysis. Although each can be solved separately, the goal of forming coherent auditory objects and achieving a comprehensive spatial scene understanding suggests pursuing a joint solution of the two problems. This work presents an approach that robustly binds localization with the detection of sound events in a binaural robotic system. Both tasks are joined through the use of spatial stream segregation which produces probabilistic time-frequency masks for individual sources attributable to separate locations, enabling segregated sound event detection operating on these streams. We use simulations of a comprehensive suite of test scenes with multiple co-occurring sound sources, and propose performance measures for systematic investigation of the impact of scene complexity on this segregated detection of sound types. Analyzing the effect of spatial scene arrangement, we show how a robot could facilitate high performance through optimal head rotation. Furthermore, we investigate the performance of segregated detection given possible localization error as well as error in the estimation of number of active sources. Our analysis demonstrates that the proposed approach is an effective method to obtain joint sound event location and type information under a wide range of conditions.
Speaker counting is the task of estimating the number of people that are simultaneously speaking in an audio recording. For several audio processing tasks such as speaker diarization, separation, localization and tracking, knowing the number of speakers at each timestep is a prerequisite, or at least it can be a strong advantage, in addition to enabling a low latency processing. In a previous work, we addressed the speaker counting problem with a multichannel convolutional recurrent neural network which produces an estimation at a short-term frame resolution. In this work, we show that, for a given frame, there is an optimal position in the input sequence for best prediction accuracy. We empirically demonstrate the link between that optimal position, the length of the input sequence and the size of the convolutional filters.
Cardiovascular diseases are the leading cause of deaths and severely threaten human health in daily life. On the one hand, there have been dramatically increasing demands from both the clinical practice and the smart home application for monitoring the heart status of subjects suffering from chronic cardiovascular diseases. On the other hand, experienced physicians who can perform an efficient auscultation are still lacking in terms of number. Automatic heart sound classification leveraging the power of advanced signal processing and machine learning technologies has shown encouraging results. Nevertheless, human hand-crafted features are expensive and time-consuming. To this end, we propose a novel deep representation learning method with an attention mechanism for heart sound classification. In this paradigm, high-level representations are learnt automatically from the recorded heart sound data. Particularly, a global attention pooling layer improves the performance of the learnt representations by estimating the contribution of each unit in feature maps. The Heart Sounds Shenzhen (HSS) corpus (170 subjects involved) is used to validate the proposed method. Experimental results validate that, our approach can achieve an unweighted average recall of 51.2% for classifying three categories of heart sounds, i. e., normal, mild, and moderate/severe annotated by cardiologists with the help of Echocardiography.