Do you want to publish a course? Click here

An extended 3-3-1 model with radiative linear seesaw mechanism

79   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by the recent muon anomalous magnetic moment (g-2) measurement at FERMILAB and non-zero neutrino masses, we propose a model based on the $SU(3)_C times SU(3)_L times U(1)_X$ (3-3-1) gauge symmetry. The most popular 3-3-1 models in the literature require the presence of a scalar sextet to address neutrino masses. In our work, we show that we can successfully implement an one-loop linear seesaw mechanism with right-handed neutrinos, and vector-like fermions to nicely explain the active neutrino masses, and additionally reproduce the recent Muon g-2 result, in agreement with existing bounds.



rate research

Read More

Low energy linear seesaw mechanism responsible for the generation of the tiny active neutrino masses, is implemented in the extended 3-3-1 model with two scalar triplets and right handed Majorana neutrinos where the gauge symmetry is supplemented by the $A_4$ flavor discrete group and other auxiliary cyclic symmetries, whose spontaneous breaking produces the observed pattern of SM charged fermion masses and fermionic mixing parameters. Our model is consistent with the low energy SM fermion flavor data. Some phenomenological aspects such as the $Z^prime$ production at proton-proton collider and the lepton flavor violating decay of the SM-like Higgs boson are discussed. The scalar potential of the model is analyzed in detail and the SM-like Higgs boson is identified.
We propose a viable model based on the $SU(3)_Ctimes SU(3)_Ltimes U(1)_X$ gauge group, augmented by the $U(1)_{L_g}$ global lepton number symmetry and the $Delta(27) times Z_3times Z_{16}$ discrete group, capable of explaining the Standard Model (SM) fermion masses and mixings, and having a low scale seesaw mechanism which can be tested at the LHC. In addition the model provides an explanation for the SM fermion masses and mixings. In the proposed model, small masses for the light active neutrinos are generated by an inverse seesaw mechanism caused by non renormalizable Yukawa operators and mediated by three very light Majorana neutrinos and the observed hierarchy of the SM fermion masses and mixing angles is produced by the spontaneous breaking of the $Delta(27) times Z_{3}times Z_{16}$ symmetry at very large energy scale. This neutrino mass generation mechanism is not presented in our previous 3-3-1 models with $Delta(27)$ group (Nucl.Phys. B913 (2016) 792-814 and Eur.Phys.J. C76 (2016) no.5, 242), where the masses of the light active neutrinos arise from a combination of type I and type II seesaw mechanisms (Nucl.Phys. B913 (2016) 792-814) as well as from a double seesaw mechanism (Eur.Phys.J. C76 (2016) no.5, 242). Thus, this work corresponds to the first implementation of the $Delta(27)$ symmetry in a 3-3-1 model with low scale seesaw mechanism.
After the LHC is turning on and accumulating more data, the TeV scale seesaw mechanisms for small neutrino masses in the form of inverse seesaw mechanisms are gaining more and more attention once they provide neutrino masses at sub-eV scale and can be probed at the LHC. Here we restrict our investigation to the inverse type II seesaw case and implement it into the framework of the 3-3-1 model with right-handed neutrinos. As interesting result, the mechanism provides small masses to both the standard neutrinos as well as to the right-handed ones. Its best signature are the doubly charged scalars which are sextet by the 3-3-1 symmetry. We investigate their production at the LHC through the process $sigma (p,p rightarrow Z^*, gamma^* ,Z^{prime} rightarrow Delta^{++},Delta^{--})$ and their signal through four leptons final state decay channel.
We perform a comprehensive analysis of several phenomenological aspects of the renormalizable extension of the inert 3-3-1 model with sequentially loop-generated SM fermion mass hierarchy. Special attention is paid to the study of the constraints arising from the experimental data on the $rho$ parameter, as well as those ones resulting from the charged lepton flavor violating process $muto egamma$ and dark matter. We also study the single $Z$ production via Drell-Yan mechanism at the LHC. We have found that $Z$ gauge bosons heavier than about $4$ TeV comply with the experimental constraints on the oblique $rho$ parameter as well as with the collider constraints. In addition, we have found that the constraint on the charged lepton flavor violating decay $murightarrow egamma$ sets the sterile neutrino masses to be lighter than about $1.12$ TeV. In addition the model allows charged lepton flavor violating processes within reach of the forthcoming experiments. The scalar potential and the gauge sector of the model are analyzed and discussed in detail. Our model successfully accommodates the observed Dark matter relic density.
Motivated by the recent resurrection of the evidence for an eV scale sterile neutrino from the MiniBooNE experiment, we revisit one of the most minimal seesaw model known as the minimal extended seesaw that gives rise to a $3+1$ light neutrino mass matrix. We consider the presence of $A_4$ flavour symmetry which plays a non-trivial role in generating the structure of the neutrino mass matrix. Considering a diagonal charged lepton mass matrix and generic vacuum alignments of $A_4$ triplet flavons, we classify the resulting mass matrices based on their textures. Keeping aside the disallowed texture zeros based on earlier studies of $3+1$ neutrino textures, we categorise the remaining ones based on texture zeros, $mu-tau$ symmetry in the $3times3$ block and hybrid textures. After pointing out the origin of such $3+1$ neutrino textures to $A_4$ vacuum alignments, we use the latest $3+1$ neutrino oscillation data and numerically analyse the texture zeros and $mu-tau$ symmetric cases. We find that a few of them are allowed from each category predicting interesting correlations between neutrino parameters. We also find that all of these allowed cases prefer normal hierarchical pattern of light neutrino masses over inverted hierarchy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا