Do you want to publish a course? Click here

Application of Gaussian process regression to plasma turbulent transport model validation via integrated modelling

161   0   0.0 ( 0 )
 Added by Aaron Ho
 Publication date 2021
  fields Physics
and research's language is English
 Authors Aaron Ho




Ask ChatGPT about the research

This paper outlines an approach towards improved rigour in tokamak turbulence transport model validation within integrated modelling. Gaussian process regression (GPR) techniques were applied for profile fitting during the preparation of integrated modelling simulations allowing for rigourous sensitivity tests of prescribed initial and boundary conditions as both fit and derivative uncertainties are provided. This was demonstrated by a JETTO integrated modelling simulation of the JET ITER-like-wall H-mode baseline discharge #92436 with the QuaLiKiz quasilinear turbulent transport model, which is the subject of extrapolation towards a deuterium-tritium plasma. The simulation simultaneously evaluates the time evolution of heat, particle, and momentum fluxes over $sim10$ confinement times, with a simulation boundary condition at $rho_{tor} = 0.85$. Routine inclusion of momentum transport prediction in multi-channel flux-driven transport modelling is not standard and is facilitated here by recent developments within the QuaLiKiz model. Excellent agreement was achieved between the fitted and simulated profiles for $n_e$, $T_e$, $T_i$, and $Omega_{tor}$ within $2sigma$, but the simulation underpredicts the mid-radius $T_i$ and overpredicts the core $n_e$ and $T_e$ profiles for this discharge. Despite this, it was shown that this approach is capable of deriving reasonable inputs, including derivative quantities, to tokamak models from experimental data. Furthermore, multiple figures-of-merit were defined to quantitatively assess the agreement of integrated modelling predictions to experimental data within the GPR profile fitting framework.

rate research

Read More

The key challenge in the observation of the redshifted 21-cm signal from cosmic reionization is its separation from the much brighter foreground emission. Such separation relies on the different spectral properties of the two components, although, in real life, the foreground intrinsic spectrum is often corrupted by the instrumental response, inducing systematic effects that can further jeopardize the measurement of the 21-cm signal. In this paper, we use Gaussian Process Regression to model both foreground emission and instrumental systematics in $sim 2$ hours of data from the Hydrogen Epoch of Reionization Array. We find that a simple co-variance model with three components matches the data well, giving a residual power spectrum with white noise properties. These consist of an intrinsic and instrumentally corrupted component with a coherence-scale of 20 MHz and 2.4 MHz respectively (dominating the line of sight power spectrum over scales $k_{parallel} le 0.2$ h cMpc$^{-1}$) and a baseline dependent periodic signal with a period of $sim 1$ MHz (dominating over $k_{parallel} sim 0.4 - 0.8$h cMpc$^{-1}$) which should be distinguishable from the 21-cm EoR signal whose typical coherence-scales is $sim 0.8$ MHz.
This work addresses linear transport in turbulent media, with emphasis on neutral particle (atoms, molecules) transport in magnetized fusion plasmas. A stochastic model for turbulent plasmas, based upon a multivariate Gamma distribution, is presented. The geometry is a 2D slab and turbulence is assumed to be statistically homogeneous. The average neutral density and ionization source, which are the quantities relevant for integrated simulations and diagnostic applications, are calculated analytically in the scattering free case. The boundary conditions and the ratio of the turbulence correlation length to the neutral mean free path are identified as the main control parameters in the problem. The non trivial relationship between the average neutral density and the ionization source is investigated. Monte Carlo calculations including scattering are then presented, and the main trends obtained in the scattering free case are shown to be conserved.
Subspace-valued functions arise in a wide range of problems, including parametric reduced order modeling (PROM). In PROM, each parameter point can be associated with a subspace, which is used for Petrov-Galerkin projections of large system matrices. Previous efforts to approximate such functions use interpolations on manifolds, which can be inaccurate and slow. To tackle this, we propose a novel Bayesian nonparametric model for subspace prediction: the Gaussian Process Subspace regression (GPS) model. This method is extrinsic and intrinsic at the same time: with multivariate Gaussian distributions on the Euclidean space, it induces a joint probability model on the Grassmann manifold, the set of fixed-dimensional subspaces. The GPS adopts a simple yet general correlation structure, and a principled approach for model selection. Its predictive distribution admits an analytical form, which allows for efficient subspace prediction over the parameter space. For PROM, the GPS provides a probabilistic prediction at a new parameter point that retains the accuracy of local reduced models, at a computational complexity that does not depend on system dimension, and thus is suitable for online computation. We give four numerical examples to compare our method to subspace interpolation, as well as two methods that interpolate local reduced models. Overall, GPS is the most data efficient, more computationally efficient than subspace interpolation, and gives smooth predictions with uncertainty quantification.
We introduce Latent Gaussian Process Regression which is a latent variable extension allowing modelling of non-stationary multi-modal processes using GPs. The approach is built on extending the input space of a regression problem with a latent variable that is used to modulate the covariance function over the training data. We show how our approach can be used to model multi-modal and non-stationary processes. We exemplify the approach on a set of synthetic data and provide results on real data from motion capture and geostatistics.
This paper presents a new approach to a robust Gaussian process (GP) regression. Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution, such as the Laplace distribution and Student-t distribution. However, the use of a non-Gaussian likelihood would incur the need for a computationally expensive Bayesian approximate computation in the posterior inferences. The proposed approach models an outlier as a noisy and biased observation of an unknown regression function, and accordingly, the likelihood contains bias terms to explain the degree of deviations from the regression function. We entail how the biases can be estimated accurately with other hyperparameters by a regularized maximum likelihood estimation. Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem with analytical forms of the predictive mean and variance estimates. Therefore, the proposed approach is simple and very computationally attractive. It also gives a very robust and accurate GP estimate for many tested scenarios. For the numerical evaluation, we perform a comprehensive simulation study to evaluate the proposed approach with the comparison to the existing robust GP approaches under various simulated scenarios of different outlier proportions and different noise levels. The approach is applied to data from two measurement systems, where the predictors are based on robust environmental parameter measurements and the response variables utilize more complex chemical sensing methods that contain a certain percentage of outliers. The utility of the measurement systems and value of the environmental data are improved through the computationally efficient GP regression and bias model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا