Do you want to publish a course? Click here

Chasing the Higgs shape at HL-LHC

347   0   0.0 ( 0 )
 Added by Sayan Dasgupta
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The Higgs boson may well be a composite scalar with a finite extension in space. Owing to the momentum dependence of its couplings the imprints of such a composite pseudo Goldstone Higgs may show up in the tails of various kinematic distributions at the LHC, distinguishing it from an elementary state. From the bottom up we construct the momentum dependent form factors to capture the interactions of the composite Higgs boson with the weak gauge bosons. We demonstrate their impact in the differential distributions of various kinematic parameters for the $pprightarrow Z^*Hrightarrow l^+l^-bbar{b}$ channel. We show that this channel can provide an important avenue to probe the Higgs substructure at the HL-LHC.



rate research

Read More

156 - M. Cepeda , S. Gori , P. Ilten 2019
The discovery of the Higgs boson in 2012, by the ATLAS and CMS experiments, was a success achieved with only a percent of the entire dataset foreseen for the LHC. It opened a landscape of possibilities in the study of Higgs boson properties, Electroweak Symmetry breaking and the Standard Model in general, as well as new avenues in probing new physics beyond the Standard Model. Six years after the discovery, with a conspicuously larger dataset collected during LHC Run 2 at a 13 TeV centre-of-mass energy, the theory and experimental particle physics communities have started a meticulous exploration of the potential for precision measurements of its properties. This includes studies of Higgs boson production and decays processes, the search for rare decays and production modes, high energy observables, and searches for an extended electroweak symmetry breaking sector. This report summarises the potential reach and opportunities in Higgs physics during the High Luminosity phase of the LHC, with an expected dataset of pp collisions at 14 TeV, corresponding to an integrated luminosity of 3 ab$^{-1}$. These studies are performed in light of the most recent analyses from LHC collaborations and the latest theoretical developments. The potential of an LHC upgrade, colliding protons at a centre-of-mass energy of 27 TeV and producing a dataset corresponding to an integrated luminosity of 15 ab$^{-1}$, is also discussed.
Despite the discovery of the Higgs boson decay in five separate channels many parameters of the Higgs boson remain largely unconstrained. In this paper, we present a new approach to constraining the Higgs total width by requiring the Higgs to be resolved as a single high p$_T$ jet and measuring the inclusive Higgs boson cross section. To measure the inclusive Higgs boson cross section, we rely on new approaches from machine learning and a modified jet reconstruction. This approach is found to be complementary to the existing off-shell width measurement and, with the full HL-LHC luminosity, is capable of yielding similar sensitivity to the off-shell projections. We outline the theoretical and experimental limitations and present a path towards making this approach a truly model-independent measurement of the Higgs boson total width.
We study the prospects of observing the non-resonant di-Higgs pair production in the Standard Model (SM) at the high luminosity run of the 14 TeV LHC (HL-LHC), upon combining multiple final states chosen on the basis of their yield and cleanliness. In particular, we consider the $bbar{b}gamma gamma, bbar{b} tau^+ tau^-, bbar{b} WW^*, WW^*gamma gamma$ and $4W$ channels mostly focusing on final states with photons and/or leptons and study 11 final states. We employ multivariate analyses to optimise the discrimination between signal and backgrounds and find it performing better than simple cut-based analyses. The various differential distributions for the Higgs pair production have non-trivial dependencies on the Higgs self-coupling ($lambda_{hhh}$). We thus explore the implications of varying $lambda_{hhh}$ for the most sensitive search channel for the double Higgs production, textit{viz.}, $bbar{b}gammagamma$. The number of signal events originating from SM di-Higgs production in each final state is small and for this reason measurement of differential distributions may not be possible. Furthermore, we consider various physics beyond the standard model scenarios to quantify the effects of contamination while trying to measure the SM di-Higgs signals in detail. In particular, we study generic resonant heavy Higgs decays to a pair of SM-like Higgs bosons or to a pair of top quarks, heavy pseudoscalar decaying to an SM-like Higgs and a $Z$-boson, charged Higgs production in association with a top and a bottom quark and also various well-motivated supersymmetric channels. We set limits on the cross-sections for the aforementioned new physics scenarios, above which these can be seen as excesses over the SM background and affect the measurement of Higgs quartic coupling. We also discuss the correlations among various channels which can be useful to identify the new physics model.
The $tthh$ production at colliders contain rich information on the nature of Higgs boson. In this article, we systematically studied its physics at High-Luminosity Large Hadron Collider (HL-LHC), using exclusive channels with multiple ($geq 5$) $b$-jets and one lepton ($5b1ell$), multiple ($geq 5$) $b$-jets and opposite-sign di-lepton ($5b2ell$), same-sign di-lepton (SS2$ell$), multiple leptons (multi-$ell$), and di-tau resonance ($tautau$). The scenarios analyzed include: (1) the $tthh$ production in Standard Model; (2) the $tthh$ production mediated by anomalous cubic Higgs self-coupling and $tthh$ contact interaction; (3) heavy Higgs ($H$) production with $tt H to tthh$; and (4) pair production of fermionic top partners ($T$) with $T T to tthh$. To address the complication of event topologies and the mess of combinatorial backgrounds, a tool of Boosted-Decision-Tree was applied in the analyses. The $5b1ell$ and SS2$ell$ analyses define the two most promising channels, resulting in slightly different sensitivities. For non-resonant $tthh$ production, a combination of these exclusive analyses allows for its measurment in the SM with a statistical significance $sim 0.9sigma$ (with $S/B > 1 %$), and may assist partially breaking the sensitivity degeneracy w.r.t. the cubic Higgs self-coupling, a difficulty usually thought to exist in gluon fusion di-Higgs analysis at HL-LHC. These sensitivities were also projected to future hadron colliders at 27 TeV and 100 TeV. For resonant $tthh$ productions, the heavy Higgs boson in type II Two-Higgs-Doublet-Model could be efficiently searched for between the mass thresholds $2 m_h < m_H < 2 m_t$ and even beyond that, for relatively small $tanbeta$, while the fermionic top partners in composite Higgs models could be probed for up to $sim 1.5$ TeV and $sim 1.7$ TeV, for Br$(Tto th)=25%$ and $50%$, respectively.
Motivated by the success of the flavour physics programme carried out over the last decade at the Large Hadron Collider (LHC), we characterize in detail the physics potential of its High-Luminosity and High-Energy upgrades in this domain of physics. We document the extraordinary breadth of the HL/HE-LHC programme enabled by a putative Upgrade II of the dedicated flavour physics experiment LHCb and the evolution of the established flavour physics role of the ATLAS and CMS general purpose experiments. We connect the dedicated flavour physics programme to studies of the top quark, Higgs boson, and direct high-$p_T$ searches for new particles and force carriers. We discuss the complementarity of their discovery potential for physics beyond the Standard Model, affirming the necessity to fully exploit the LHCs flavour physics potential throughout its upgrade eras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا