Hydrodynamics of ideal fracton fluids


Abstract in English

Low-energy dynamics of many-body fracton excitations necessary to describe topological defects should be governed by a novel type of hydrodynamic theory. We use a Poisson bracket approach to systematically derive hydrodynamic equations from conservation laws of scalar theories with fracton excitations. We study two classes of theories. In the first class we introduce a general action for a scalar with a shift symmetry linear in the spatial coordinates, while the second class serves as a toy model for disclinations and dislocations propagating along the Burgers vector. We apply our construction to study hydrodynamic fluctuations around equilibrium states and derive the dispersion relations of hydrodynamic modes.

Download