Do you want to publish a course? Click here

Site-Controlled Telecom Single-Photon Emitters in Atomically-thin MoTe2

106   0   0.0 ( 0 )
 Added by Huan Zhao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum emitters (QEs) in two-dimensional transition metal dichalcogenides (2D TMDCs) have advanced to the forefront of quantum communication and transduction research due to their unique potentials in accessing valley pseudo-spin degree of freedom (DOF) and facile integration into quantum-photonic, electronic and sensing platforms via the layer-by-layer-assembly approach. To date, QEs capable of operating in O-C telecommunication bands have not been demonstrated in TMDCs. Here we report a deterministic creation of such telecom QEs emitting over the 1080 to 1550 nm wavelength range via coupling of 2D molybdenum ditelluride (MoTe2) to strain inducing nano-pillar arrays. Our Hanbury Brown and Twiss experiment conducted at 10 K reveals clear photon antibunching with 90% single photon purity. Ultra-long lifetimes, 4-6 orders of magnitude longer than that of the 2D exciton, are also observed. Polarization analysis further reveals that while some QEs display cross-linearly polarized doublets with ~1 meV splitting resulting from the strain induced anisotropic exchange interaction, valley degeneracy is preserved in other QEs. Valley Zeeman splitting as well as restoring of valley symmetry in cross-polarized doublets are observed under 8T magnetic field. In contrast to other telecom QEs, our QEs which offer the potential to access valley DOF through single photons, could lead to unprecedented advantages in optical fiber-based quantum networks.

rate research

Read More

Real-world quantum applications, eg. on-chip quantum networks and quantum cryptography, necessitate large scale integrated single-photon sources with nanoscale footprint for modern information technology. While on-demand and high fidelity implantation of atomic scale single-photon sources in conventional 3D materials suffer from uncertainties due to the crystals dimensionality, layered 2D materials can host point-like centers with inherent confinement to a sub-nm plane. However, previous attempts to truly deterministically control spatial position and spectral homogeneity while maintaining the 2D character have not been realized. Here, we demonstrate the on-demand creation and precise positioning of single-photon sources in atomically thin MoS2 with very narrow ensemble broadening and near-unity fabrication yield. Focused ion beam irradiation creates 100s to 1000s of mono-typical atomistic defects with anti-bunched emission lines with sub-10 nm lateral and 0.7 nm axial positioning accuracy. Our results firmly establish 2D materials as a scalable platform for single-photon emitters with unprecedented control of position as well as photophysical properties owing to the all-interfacial nature.
Whereas the Si photonic platform is highly attractive for scalable optical quantum information processing, it lacks practical solutions for efficient photon generation. Self-assembled semiconductor quantum dots (QDs) efficiently emitting photons in the telecom bands ($1460-1625$ nm) allow for heterogeneous integration with Si. In this work, we report on a novel, robust, and industry-compatible approach for achieving single-photon emission from InAs/InP QDs heterogeneously integrated with a Si substrate. As a proof of concept, we demonstrate a simple vertical emitting device, employing a metallic mirror beneath the QD emitter, and experimentally obtained photon extraction efficiencies of $sim10%$. Nevertheless, the figures of merit of our structures are comparable with values previously only achieved for QDs emitting at shorter wavelength or by applying technically demanding fabrication processes. Our architecture and the simple fabrication procedure allows for the demonstration of a single-photon generation with purity $mathcal{P}>98%$ at the liquid helium temperature and $mathcal{P}=75%$ at $80$ K.
Stacking order can significantly influence the physical properties of two-dimensional (2D) van der Waals materials. The recent isolation of atomically thin magnetic materials opens the door for control and design of magnetism via stacking order. Here we apply hydrostatic pressure up to 2 GPa to modify the stacking order in a prototype van der Waals magnetic insulator CrI3. We observe an irreversible interlayer antiferromagnetic (AF) to ferromagnetic (FM) transition in atomically thin CrI3 by magnetic circular dichroism and electron tunneling measurements. The effect is accompanied by a monoclinic to a rhombohedral stacking order change characterized by polarized Raman spectroscopy. Before the structural change, the interlayer AF coupling energy can be tuned up by nearly 100% by pressure. Our experiment reveals interlayer FM coupling, which is the established ground state in bulk CrI3, but never observed in native exfoliated thin films. The observed correlation between the magnetic ground state and the stacking order is in good agreement with first principles calculations and suggests a route towards nanoscale magnetic textures by moire engineering.
Most quantum communication schemes aim at the long-distance transmission of quantum information. In the quantum repeater concept, the transmission line is subdivided into shorter links interconnected by entanglement distribution via Bell-state measurements to overcome inherent channel losses. This concept requires on-demand single-photon sources with a high degree of multi-photon suppression and high indistinguishability within each repeater node. For a successful operation of the repeater, a spectral matching of remote quantum light sources is essential. We present a spectrally tunable single-photon source emitting in the telecom O-band with the potential to function as a building block of a quantum communication network based on optical fibers. A thin membrane of GaAs embedding InGaAs quantum dots (QDs) is attached onto a piezoelectric actuator via gold thermocompression bonding. Here the thin gold layer acts simultaneously as an electrical contact, strain transmission medium and broadband backside mirror for the QD-micromesa. The nanofabrication of the QD-micromesa is based on in-situ electron-beam lithography, which makes it possible to integrate pre-selected single QDs deterministically into the center of monolithic micromesa structures. The QD pre-selection is based on distinct single-QD properties, signal intensity and emission energy. In combination with strain-induced fine tuning this offers a robust method to achieve spectral resonance in the emission of remote QDs. We show that the spectral tuning has no detectable influence on the multi-photon suppression with $g^{(2)}(0)$ as low as 2-4% and that the emission can be stabilized to an accuracy of 4 $mu$eV using a closed-loop optical feedback.
We show that a transition metal dichalcogenide monolayer with a radiatively broadened exciton resonance would exhibit perfect extinction of a transmitted field. This result holds for s- or p-polarized weak resonant light fields at any incidence angle, due to the conservation of in-plane momentum of excitons and photons in a flat defect-free two dimensional crystal. In contrast to extinction experiments with single quantum emitters, exciton-exciton interactions lead to an enhancement of reflection with increasing power for incident fields that are blue detuned with respect to the exciton resonance. We show that the interactions limit the maximum reflection that can be achieved by depleting the incoming coherent state into an outgoing two-mode squeezed state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا