Optical vortex manipulation for topological quantum computation


Abstract in English

Proposed approaches to topological quantum computation based on Majorana bound states may enable new paths to fault-tolerant quantum computing. Several recent experiments have suggested that the vortex cores of topological superconductors, such as iron-based superconductors, may host Majorana bound states at zero energy. To facilitate quantum computation with these zero-energy vortex bound states, a precise and fast manipulation of individual vortices is crucial. However, handling individual vortices remains a challenge, and a theoretical framework for describing individually controlled vortex motion is still critically needed. We propose a scheme for the use of local heating based on scanning optical microscopy to manipulate Majorana bound states emergent in the vortex cores of topological superconductors. Specifically, we derive the conditions required for transporting a single vortex between two stationary defects in the superconducting material by trapping it with a hot spot generated by local optical heating. Using these critical conditions for the vortex motion, we then establish the ideal material properties for the implementation of our manipulation scheme, which paves the way toward the controllable handling of zero-energy vortex bound states.

Download