Do you want to publish a course? Click here

Analytical approximations for the speed of pacemaker-generated waves

274   0   0.0 ( 0 )
 Added by Lendert Gelens
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In an oscillatory medium, a region which oscillates faster than its surroundings can act as a source of outgoing waves. Such pacemaker-generated waves can synchronize the whole medium and are present in many chemical and biological systems, where they are a means of transmitting information at a fixed speed over large distances. In this paper, we apply analytical tools to investigate the factors that determine the speed of these waves. More precisely, we apply singular perturbation and phase reduction methods to two types of negative-feedback oscillators, one built on underlying bistability and one including a time delay in the negative feedback. In both systems, we investigate the influence of timescale separation on the resulting wave speed, as well as the effect of size and frequency of the pacemaker region. We compare our analytical estimates to numerical simulations which we described previously [1].



rate research

Read More

We study numerically the nonlinear stage of modulational instability (MI) of cnoidal waves, in the framework of the focusing one-dimensional Nonlinear Schrodinger (NLS) equation. Cnoidal waves are the exact periodic solutions of the NLS equation and can be represented as a lattice of overlapping solitons. MI of these lattices lead to development of integrable turbulence [Zakharov V.E., Stud. Appl. Math. 122, 219-234 (2009)]. We study the major characteristics of the turbulence for dn-branch of cnoidal waves and demonstrate how these characteristics depend on the degree of overlapping between the solitons within the cnoidal wave. Integrable turbulence, that develops from MI of dn-branch of cnoidal waves, asymptotically approaches to its stationary state in oscillatory way. During this process kinetic and potential energies oscillate around their asymptotic values. The amplitudes of these oscillations decay with time as t^{-a}, 1<a<1.5, the phases contain nonlinear phase shift decaying as t^{-1/2}, and the frequency of the oscillations is equal to the double maximal growth rate of the MI, s=2g_{max}. In the asymptotic stationary state the ratio of potential to kinetic energy is equal to -2. The asymptotic PDF of wave amplitudes is close to Rayleigh distribution for cnoidal waves with strong overlapping, and is significantly non-Rayleigh one for cnoidal waves with weak overlapping of solitons. In the latter case the dynamics of the system reduces to two-soliton collisions, which occur with exponentially small rate and provide up to two-fold increase in amplitude compared with the original cnoidal wave.
Conversion of truncated Airy waves (AWs) carried by the second-harmonic (SH) component into axisymmetric $chi^{2}$ solitons is considered in the 2D system with the quadratic nonlinearity. The spontaneous conversion is driven by the parametric instability of the SH wave. The input in the form of the AW vortex is considered too. As a result, one, two, or three stable solitons emerge in a well-defined form, unlike the recently studied 1D setting, where the picture is obscured by radiation jets. Shares of the total power captured by the emerging solitons and conversion efficiency are found as functions of parameters of the AW input.
96 - A. Wang , A. Ludu , Z. Zong 2020
Experimental results describing random, uni-directional, long crested, water waves over non-uniform bathymetry confirm the formation of stable coherent wave packages traveling with almost uniform group velocity. The waves are generated with JONSWAP spectrum for various steepness, height and constant period. A set of statistical procedures were applied to the experimental data, including the space and time variation of kurtosis, skewness, BFI, Fourier and moving Fourier spectra, and probability distribution of wave heights. Stable wave packages formed out of the random field and traveling over shoals, valleys and slopes were compared with exact solutions of the NLS equation resulting in good matches and demonstrating that these packages are very similar to deep water breathers solutions, surviving over the non-uniform bathymetry. We also present events of formation of rogue waves over those regions where the BFI, kurtosis and skewness coefficients have maximal values.
We establish rigorous upper and lower bounds for the speed of pulled fronts with a cutoff. We show that the Brunet-Derrida formula corresponds to the leading order expansion in the cut-off parameter of both the upper and lower bounds. For sufficiently large cut-off parameter the Brunet-Derrida formula lies outside the allowed band determined from the bounds. If nonlinearities are neglected the upper and lower bounds coincide and are the exact linear speed for all values of the cut-off parameter.
124 - Zhi Zong , Andrei Ludu 2019
When a $(1+1)$-dimensional nonlinear PDE in real function $eta(x,t)$ admits localized traveling solutions we can consider $L$ to be the average width of the envelope, $A$ the average value of the amplitude of the envelope, and $V$ the group velocity of such a solution. The replacement rule (RR or nonlinear dispersion relation) procedure is able to provide a simple qualitative relation between these three parameters, without actually solve the equation. Examples are provided from KdV, C-H and BBM equations, but the procedure appears to be almost universally valid for such $(1+1)$-dimensional nonlinear PDE and their localized traveling solutions cite{3}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا