Do you want to publish a course? Click here

An augmented Lagrangian preconditioner for the magnetohydrodynamics equations at high Reynolds and coupling numbers

68   0   0.0 ( 0 )
 Added by Fabian Laakmann
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The magnetohydrodynamics (MHD) equations are generally known to be difficult to solve numerically, due to their highly nonlinear structure and the strong coupling between the electromagnetic and hydrodynamic variables, especially for high Reynolds and coupling numbers. In this work, we present a scalable augmented Lagrangian preconditioner for a finite element discretization of the $mathbf{B}$-$mathbf{E}$ formulation of the incompressible viscoresistive MHD equations. For stationary problems, our solver achieves robust performance with respect to the Reynolds and coupling numbers in two dimensions and good results in three dimensions. We extend our method to fully implicit methods for time-dependent problems which we solve robustly in both two and three dimensions. Our approach relies on specialized parameter-robust multigrid methods for the hydrodynamic and electromagnetic blocks. The scheme ensures exactly divergence-free approximations of both the velocity and the magnetic field up to solver tolerances. We confirm the robustness of our solver by numerical experiments in which we consider fluid and magnetic Reynolds numbers and coupling numbers up to 10,000 for stationary problems and up to 100,000 for transient problems in two and three dimensions.



rate research

Read More

209 - Chao Chen , , George Biros 2021
The discretization of certain integral equations, e.g., the first-kind Fredholm equation of Laplaces equation, leads to symmetric positive-definite linear systems, where the coefficient matrix is dense and often ill-conditioned. We introduce a new preconditioner based on a novel overlapping domain decomposition that can be combined efficiently with fast direct solvers. Empirically, we observe that the condition number of the preconditioned system is $O(1)$, independent of the problem size. Our domain decomposition is designed so that we can construct approximate factorizations of the subproblems efficiently. In particular, we apply the recursive skeletonization algorithm to subproblems associated with every subdomain. We present numerical results on problem sizes up to $16,384^2$ in 2D and $256^3$ in 3D, which were solved in less than 16 hours and three hours, respectively, on an Intel Xeon Platinum 8280M.
This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions. To this end, we first reformulate the original problem into a minimax problem corresponding to a feasible augmented Lagrangian, which can be solved by the augmented Lagrangian method in an infinite dimensional setting. Based on this, by expressing the primal and dual variables with two individual deep neural network functions, we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimization method together with a projection technique. Compared to the traditional penalty method, the new method admits two main advantages: i) the choice of the penalty parameter is flexible and robust, and ii) the numerical solution is more accurate in the same magnitude of computational cost. As typical applications, we apply the new approach to solve elliptic problems and (nonlinear) eigenvalue problems with essential boundary conditions, and numerical experiments are presented to show the effectiveness of the new method.
126 - Jianchao Bai 2021
Motivated by the recent work [He-Yuan, Balanced Augmented Lagrangian Method for Convex Programming, arXiv: 2108.08554v1, (2021)], a novel Augmented Lagrangian Method (ALM) has been proposed for solving a family of convex optimization problem subject to equality or inequality constraint. This new method is then extended to solve the multi-block separable convex optimization problem, and two related primal-dual hybrid gradient algorithms are also discussed. Preliminary and some new convergence results are established with the aid of variational analysis for both the saddle point of the problem and the first-order optimality conditions of involved subproblems.
Pavarino proved that the additive Schwarz method with vertex patches and a low-order coarse space gives a $p$-robust solver for symmetric and coercive problems. However, for very high polynomial degree it is not feasible to assemble or factorize the matrices for each patch. In this work we introduce a direct solver for separable patch problems that scales to very high polynomial degree on tensor product cells. The solver constructs a tensor product basis that diagonalizes the blocks in the stiffness matrix for the internal degrees of freedom of each individual cell. As a result, the non-zero structure of the cell matrices is that of the graph connecting internal degrees of freedom to their projection onto the facets. In the new basis, the patch problem is as sparse as a low-order finite difference discretization, while having a sparser Cholesky factorization. We can thus afford to assemble and factorize the matrices for the vertex-patch problems, even for very high polynomial degree. In the non-separable case, the method can be applied as a preconditioner by approximating the problem with a separable surrogate.
In this paper, high order semi-implicit well-balanced and asymptotic preserving finite difference WENO schemes are proposed for the shallow water equations with a non-flat bottom topography. We consider the Froude number ranging from O(1) to 0, which in the zero Froude limit becomes the lake equations for balanced flow without gravity waves. We apply a well-balanced finite difference WENO reconstruction, coupled with a stiffly accurate implicit-explicit (IMEX) Runge-Kutta time discretization. The resulting semi-implicit scheme can be shown to be well-balanced, asymptotic preserving (AP) and asymptotically accurate (AA) at the same time. Both one- and two-dimensional numerical results are provided to demonstrate the high order accuracy, AP property and good performance of the proposed methods in capturing small perturbations of steady state solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا