Do you want to publish a course? Click here

Development of spin fluctuations under the presence of $d$-wave bond order in cuprate superconductors

104   0   0.0 ( 0 )
 Added by Satoshi Ando
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In cuprate superconductors, superconductivity appears below the CDW transition temperature $T_{CDW}$. However, many-body electronic states under the CDW order are still far from understood. Here, we study the development of the spin fluctuations under the presence of $d$-wave bond order (BO) with wavevector $q=(pi/2,0),(0,pi/2)$, which is derived from the paramagnon interference mechanism in recent theoretical studies. Based on the $4 times 1$ and $4 times 4$ cluster Hubbard models, the feedback effects between spin susceptibility and self-energy are calculated self-consistently by using the fluctuation-exchange (FLEX) approximation. It is found that the $d$-wave BO leads to a sizable suppression of the nuclear magnetic relaxation rate $1/T_1$. In contrast, the reduction in $T_c$ is small, since the static susceptibility $chi^s(Q_s)$ is affected by the BO just slightly. It is verified that the $d$-wave BO scenario is consistent with the experimental electronic properties below $T_{CDW}$.



rate research

Read More

97 - B. Kyung , J.S. Landry , 2002
We show that, at weak to intermediate coupling, antiferromagnetic fluctuations enhance d-wave pairing correlations until, as one moves closer to half-filling, the antiferromagnetically-induced pseudogap begins to suppress the tendency to superconductivity. The accuracy of our approach is gauged by detailed comparisons with Quantum Monte Carlo simulations. The negative pressure dependence of Tc and the existence of photoemission hot spots in electron-doped cuprate superconductors find their natural explanation within this approach.
We propose a mechanism of spin-triplet superconductivity at the edge of $d$-wave superconductors. Recent theoretical research in $d$-wave superconductors predicted that strong ferromagnetic (FM) fluctuations are induced by large density of states due to edge Andreev bound states (ABS). Here, we construct the linearized gap equation for the edge-induced superconductivity, and perform a numerical study based on a large cluster Hubbard model with bulk $d$-wave superconducting (SC) gap. We find that ABS-induced strong FM fluctuations mediate the $d pm ip$-wave SC state, in which the time-reversal symmetry is broken. The edge-induced $p$-wave transition temperature $T_{cp}$ is slightly lower than the bulk $d$-wave one $T_{cd}$, and the Majorana bound state may be created at the endpoint of the edge.
To understand the origin of unconventional charge-density-wave (CDW) states in cuprate superconductors, we establish the self-consistent CDW equation, and analyze the CDW instabilities based on the realistic Hubbard model, without assuming any $q$-dependence and the form factor. Many higher-order many-body processes, which are called the vertex corrections, are systematically generated by solving the CDW equation. When the spin fluctuations are strong, the uniform $q=0$ nematic CDW with $d$-form factor shows the leading instability. The axial nematic CDW instability at $q = Q_a = (delta,0)$ ($delta approx pi/2$) is the second strongest, and its strength increases under the static uniform CDW order. The present theory predicts that uniform CDW transition emerges at a high temperature, and it stabilize the axial $q = Q_a$ CDW at $T = T_{CDW}$. It is confirmed that the higher-order Aslamazov-Larkin processes cause the CDW orders at both $q = 0$ and $Q_a$.
128 - W.A. Atkinson , S. Ufkes , 2017
Using a mix of numerical and analytic methods, we show that recent NMR $^{17}$O measurements provide detailed information about the structure of the charge-density wave (CDW) phase in underdoped YBa$_2$Cu$_3$O$_{6+x}$. We perform Bogoliubov-de Gennes (BdG) calculations of both the local density of states and the orbitally resolved charge density, which are closely related to the magnetic and electric quadrupole contributions to the NMR spectrum, using a microscopic model that was shown previously to agree closely with x-ray experiments. The BdG results reproduce qualitative features of the experimental spectrum extremely well. These results are interpreted in terms of a generic hotspot model that allows one to trace the origins of the NMR lineshapes. We find that four quantities---the orbital character of the Fermi surface at the hotspots, the Fermi surface curvature at the hotspots, the CDW correlation length, and the magnitude of the subdominant CDW component---are key in determining the lineshapes.
337 - S. Sakai , S. Blanc , M. Civelli 2012
We reveal the full energy-momentum structure of the pseudogap of underdoped high-Tc cuprate superconductors. Our combined theoretical and experimental analysis explains the spectral-weight suppression observed in the B2g Raman response at finite energies in terms of a pseudogap appearing in the single-electron excitation spectra above the Fermi level in the nodal direction of momentum space. This result suggests an s-wave pseudogap (which never closes in the energy-momentum space), distinct from the d-wave superconducting gap. Recent tunneling and photoemission experiments on underdoped cuprates also find a natural explanation within the s-wave-pseudogap scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا