Do you want to publish a course? Click here

Constraining self-interacting dark matter with the full dataset of PandaX-II

118   0   0.0 ( 0 )
 Added by Jijun Yang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Self-interacting Dark Matter (SIDM) is a leading candidate proposed to solve discrepancies between predictions of the prevailing cold dark matter theory and observations of galaxies. Many SIDM models predict the existence of a light force carrier that mediate strong dark matter self-interactions. If the mediator couples to the standard model particles, it could produce characteristic signals in dark matter direct detection experiments. We report searches for SIDM models with a light mediator using the full dataset of the PandaX-II experiment, based on a total exposure of 132 tonne-days. No significant excess over background is found, and our likelihood analysis leads to a strong upper limit on the dark matter-nucleon coupling strength. We further combine the PandaX-II constraints and those from observations of the light element abundances in the early universe, and show that direct detection and cosmological probes can provide complementary constraints on dark matter models with a light mediator.



rate research

Read More

We search for nuclear recoil signals of dark matter models with a light mediator in PandaX-II, a direct detection experiment in China Jinping underground Laboratory. Using data collected in 2016 and 2017 runs, corresponding to a total exposure of 54 ton day, we set upper limits on the zero-momentum dark matter-nucleon cross section. These limits have a strong dependence on the mediator mass when it is comparable to or below the typical momentum transfer. We apply our results to constrain self-interacting dark matter models with a light mediator mixing with standard model particles, and set strong limits on the model parameter space for the dark matter mass ranging from $5~{rm GeV}$ to $10~{rm TeV}$.
We report the dark matter search results obtained using the full 132 ton$cdot$day exposure of the PandaX-II experiment, including all data from March 2016 to August 2018. No significant excess of events is identified above the expected background. Upper limits are set on the spin-independent dark matter-nucleon interactions. The lowest 90% confidence level exclusion on the spin-independent cross section is $2.2times 10^{-46}$ cm$^2$ at a WIMP mass of 30 GeV/$c^2$.
We report here the results of searching for inelastic scattering of dark matter (initial and final state dark matter particles differ by a small mass splitting) with nucleon with the first 79.6-day of PandaX-II data (Run 9). We set the upper limits for the spin independent WIMP-nucleon scattering cross section up to a mass splitting of 300 keV/c$^2$ at two benchmark dark matter masses of 1 and 10 TeV/c$^2$.
We present the results of a search for WIMPs from the commissioning run of the PandaX-II experiment located at the China Jinping underground Laboratory. A WIMP search data set with an exposure of 306$times$19.1 kg-day was taken, while its dominant $^{85}$Kr background was used as the electron recoil calibration. No WIMP candidates are identified, and a 90% upper limit is set on the spin-independent elastic WIMP-nucleon cross section with a lowest excluded cross section of 2.97$times$10$^{-45}$~cm$^2$ at a WIMP mass of 44.7~GeV/c$^2$.
We report the results of a weakly-interacting massive particle (WIMP) dark matter search using the full 80.1;live-day exposure of the first stage of the PandaX experiment (PandaX-I) located in the China Jin-Ping Underground Laboratory. The PandaX-I detector has been optimized for detecting low-mass WIMPs, achieving a photon detection efficiency of 9.6%. With a fiducial liquid xenon target mass of 54.0,kg, no significant excess event were found above the expected background. A profile likelihood analysis confirms our earlier finding that the PandaX-I data disfavor all positive low-mass WIMP signals reported in the literature under standard assumptions. A stringent bound on the low mass WIMP is set at WIMP mass below 10,GeV/c$^2$, demonstrating that liquid xenon detectors can be competitive for low-mass WIMP searches.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا