Do you want to publish a course? Click here

Revisiting the double-well problem by deep learning with a hybrid network

124   0   0.0 ( 0 )
 Added by Jing Qian
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Solving physical problems by deep learning is accurate and efficient mainly accounting for the use of an elaborate neural network. We propose a novel hybrid network which integrates two different kinds of neural networks: LSTM and ResNet, in order to overcome the difficulty met in solving strongly-oscillating dynamics of the systems time evolution. By taking the double-well model as an example we show that our new method can benefit from a pre-learning and verification of the periodicity of frequency by using the LSTM network, simultaneously making a high-fidelity prediction about the whole dynamics of system with ResNet, which is impossibly achieved in the case of single network. Such a hybrid network can be applied for solving cooperative dynamics in a system with fast spatial or temporal modulations, promising for realistic oscillation calculations under experimental conditions.



rate research

Read More

Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields, ranging from materials science to biochemistry to astrophysics. Machine learning holds the promise of learning the kinetic energy functional via examples, by-passing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing either larger systems or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. Both improved accuracy and lower computational cost with this method are demonstrated by reproducing DFT energies for a range of molecular geometries generated during molecular dynamics simulations. Moreover, the methodology could be applied directly to quantum chemical calculations, allowing construction of density functionals of quantum-chemical accuracy.
We outline the development of a data science module within OpenFOAM which allows for the in-situ deployment of trained deep learning architectures for general-purpose predictive tasks. This module is constructed with the TensorFlow C API and is integrated into OpenFOAM as an application that may be linked at run time. Notably, our formulation precludes any restrictions related to the type of neural network architecture (i.e., convolutional, fully-connected, etc.). This allows for potential studies of complicated neural architectures for practical CFD problems. In addition, the proposed module outlines a path towards an open-source, unified and transparent framework for computational fluid dynamics and machine learning.
112 - Xing Wang , Yijun Wang , Bin Weng 2020
We have proposed to develop a global hybrid deep learning framework to predict the daily prices in the stock market. With representation learning, we derived an embedding called Stock2Vec, which gives us insight for the relationship among different stocks, while the temporal convolutional layers are used for automatically capturing effective temporal patterns both within and across series. Evaluated on S&P 500, our hybrid framework integrates both advantages and achieves better performance on the stock price prediction task than several popular benchmarked models.
A novel hybrid deep neural network architecture is designed to capture the spatial-temporal features of unsteady flows around moving boundaries directly from high-dimensional unsteady flow fields data. The hybrid deep neural network is constituted by the convolutional neural network (CNN), improved convolutional Long-Short Term Memory neural network (ConvLSTM) and deconvolutional neural network (DeCNN). Flow fields at future time step can be predicted through flow fields by previous time steps and boundary positions at those steps by the novel hybrid deep neural network. Unsteady wake flows around a forced oscillation cylinder with various amplitudes are calculated to establish the datasets as training samples for training the hybrid deep neural networks. The trained hybrid deep neural networks are then tested by predicting the unsteady flow fields around a forced oscillation cylinder with new amplitude. The effect of neural network structure parameters on prediction accuracy was analyzed. The hybrid deep neural network, constituted by the best parameter combination, is used to predict the flow fields in the future time. The predicted flow fields are in good agreement with those calculated directly by computational fluid dynamic solver, which means that this kind of deep neural network can capture accurate spatial-temporal information from the spatial-temporal series of unsteady flows around moving boundaries. The result shows the potential capability of this kind novel hybrid deep neural network in flow control for vibrating cylinder, where the fast calculation of high-dimensional nonlinear unsteady flow around moving boundaries is needed.
Inspired by the success of classical neural networks, there has been tremendous effort to develop classical effective neural networks into quantum concept. In this paper, a novel hybrid quantum-classical neural network with deep residual learning (Res-HQCNN) is proposed. We firstly analysis how to connect residual block structure with a quantum neural network, and give the corresponding training algorithm. At the same time, the advantages and disadvantages of transforming deep residual learning into quantum concept are provided. As a result, the model can be trained in an end-to-end fashion, analogue to the backpropagation in classical neural networks. To explore the effectiveness of Res-HQCNN , we perform extensive experiments for quantum data with or without noisy on classical computer. The experimental results show the Res-HQCNN performs better to learn an unknown unitary transformation and has stronger robustness for noisy data, when compared to state of the arts. Moreover, the possible methods of combining residual learning with quantum neural networks are also discussed.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا