Tidal Disruption Events


Abstract in English

The concept of stars being tidally ripped apart and consumed by a massive black hole (MBH) lurking in the center of a galaxy first captivated theorists in the late 1970s. The observational evidence for these rare but illuminating phenomena for probing otherwise dormant MBHs, first emerged in archival searches of the soft X-ray ROSAT All-Sky Survey in the 1990s; but has recently accelerated with the increasing survey power in the optical time domain, with tidal disruption events (TDEs) now regarded as a class of optical nuclear transients with distinct spectroscopic features. Multiwavelength observations of TDEs have revealed panchromatic emission, probing a wide range of scales, from the innermost regions of the accretion flow, to the surrounding circumnuclear medium. I review the current census of 56 TDEs reported in the literature, and their observed properties can be summarized as follows: $bullet$ The optical light curves follow a power-law decline from peak that scales with the inferred central black hole mass as expected for the fallback rate of the stellar debris, but the rise time does not. $bullet$ The UV/optical and soft X-ray thermal emission come from different spatial scales, and their intensity ratio has a large dynamic range, and is highly variable, providing important clues as to what is powering the two components. $bullet$ They can be grouped into three spectral classes, and those with Bowen fluorescence line emission show a preference for a hotter and more compact line-emitting region, while those with only He II emission lines are the rarest class.

Download