Motivic limits for Fano varieties of $k$-planes


Abstract in English

We study the probability that an $(n - m)$-dimensional linear subspace in $mathbb{P}^n$ or a collection of points spanning such a linear subspace is contained in an $m$-dimensional variety $Y subset mathbb{P}^n$. This involves a strategy used by Galkin--Shinder to connect properties of a cubic hypersurface to its Fano variety of lines via cut and paste relations in the Grothendieck ring of varieties. Generalizing this idea to varieties of higher codimension and degree, we can measure growth rates of weighted probabilities of $k$-planes contained in a sequence of varieties with varying initial parameters over a finite field. In the course of doing this, we move an identity motivated by rationality problems involving cubic hypersurfaces to a motivic statistics setting associated with cohomological stability.

Download