Do you want to publish a course? Click here

Hyperbolic compactification of M-theory and de Sitter quantum gravity

223   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a mechanism for accelerated expansion of the universe in the generic case of negative-curvature compactifications of M-theory, with minimal ingredients. M-theory on a hyperbolic manifold with small closed geodesics supporting Casimir energy -- along with a single classical source (7-form flux) -- contains an immediate 3-term structure for volume stabilization at positive potential energy. Hyperbolic manifolds are well-studied mathematically, with an important rigidity property at fixed volume. They and their Dehn fillings to more general Einstein spaces exhibit explicit discrete parameters that yield small closed geodesics supporting Casimir energy. The off-shell effective potential derived by M. Douglas incorporates the warped product structure via the constraints of general relativity, screening negative energy. Analyzing the fields sourced by the localized Casimir energy and the available discrete choices of manifolds and fluxes, we find a regime where the net curvature, Casimir energy, and flux compete at large radius and stabilize the volume. Further metric and form field deformations are highly constrained by hyperbolic rigidity and warping effects, leading to calculations giving strong indications of a positive Hessian, and residual tadpoles are small. We test this via explicit back reacted solutions and perturbations in patches including the Dehn filling regions, initiate a neural network study of further aspects of the internal fields, and derive a Maldacena-Nunez style no-go theorem for Anti-de Sitter extrema. A simple generalization incorporating 4-form flux produces axion monodromy inflation. As a relatively simple de Sitter uplift of the large-N M2-brane theory, the construction applies to de Sitter holography as well as to cosmological modeling, and introduces new connections between mathematics and the physics of string/M theory compactifications.



rate research

Read More

We study M-theory compactification on ${mathbb{T}^7/ mathbb{Z}_2^3}$ in the presence of a seven-flux, metric fluxes and KK monopoles. The effective four-dimensional supergravity has seven chiral multiplets whose couplings are specified by the $G_2$-structure of the internal manifold. We supplement the corresponding superpotential by a KKLT type non-perturbative exponential contribution for all, or for some of the seven moduli, and find a discrete set of supersymmetric Minkowski minima. We also study type IIA and type IIB string theory compactified on ${mathbb{T}^6/ mathbb{Z}_2^2}$. In type IIA, we use a six-flux, geometric fluxes and non-perturbative exponents. In type IIB theory, we use F and H fluxes, and non-geometric Q and P fluxes, corresponding to consistently gauged supergravity with certain embedding tensor components, emph{without non-perturbative exponents}. Also in these situations, we produce discrete Minkowski minima. Finally, to construct dS vacua starting from these Minkowski progenitors, we follow the procedure of mass production of dS vacua.
In this note we study a massive IIA supergravity theory obtained in hep-th/9707139 by compactification of M-theory. We point out that de Sitter space in arbitrary dimensions arises naturally as the vacuum of this theory. This explicitly shows how de Sitter space can be embedded into eleven-dimensional supergravity. In addition we discuss the novel way in which this theory avoids various `no-go theorems which assert that de Sitter space is not a consistent vacua of eleven-dimensional supergravity theory. We also point out that the eight-branes of this theory, which couple electrically to the ten-form, can sweep out de Sitter world-volumes.
Calculating the quantum evolution of a de Sitter universe on superhorizon scales is notoriously difficult. To address this challenge, we introduce the Soft de Sitter Effective Theory (SdSET). This framework holds for superhorizon modes whose comoving momentum is far below the UV scale, which is set by the inverse comoving horizon. The SdSET is formulated using the same approach that yields the Heavy Quark Effective Theory. The degrees of freedom that capture the long wavelength dynamics are identified with the growing and decaying solutions to the equations of motion. The operator expansion is organized using a power counting scheme, and loops can be regulated while respecting the low energy symmetries. For massive quantum fields in a fixed de Sitter background, power counting implies that all interactions beyond the horizon are irrelevant. Alternatively, if the fields are very light, the leading interactions are at most marginal, and resumming the associated logarithms using (dynamical) renormalization group techniques yields the evolution equation for canonical stochastic inflation. The SdSET is also applicable to models where gravity is dynamical, including inflation. In this case, diffeomorphism invariance ensures that all interactions are irrelevant, trivially implying the all-orders conservation of adiabatic density fluctuations and gravitational waves. We briefly touch on the application to slow-roll eternal inflation by identifying novel relevant operators. This work serves to demystify many aspects of perturbation theory outside the horizon, and has a variety of applications to problems of cosmological interest.
Quantum consistency suggests that any de Sitter patch that lasts a number of Hubble times that exceeds its Gibbons-Hawking entropy divided by the number of light particle species suffers an effect of quantum breaking. Inclusion of other interactions makes the quantum break-time shorter. The requirement that this must not happen puts severe constraints on scalar potentials, essentially suppressing the self-reproduction regimes. In particular, it eliminates both local and global minima with positive energy densities and imposes a general upper bound on the number of e-foldings in any given Hubble patch. Consequently, maxima and other tachyonic directions must be curved stronger than the corresponding Hubble parameter. We show that the key relations of the recently-proposed de Sitter swampland conjecture follow from the de Sitter quantum breaking bound. We give a general derivation and also illustrate this on a concrete example of $D$-brane inflation. We can say that string theory as a consistent theory of quantum gravity nullifies a positive vacuum energy in self-defense against quantum breaking.
224 - Gary Shiu , Yoske Sumitomo 2011
We present further no-go theorems for classical de Sitter vacua in Type II string theory, i.e., de Sitter constructions that do not invoke non-perturbative effects or explicit supersymmetry breaking localized sources. By analyzing the stability of the 4D potential arising from compactification on manfiolds with curvature, fluxes, and orientifold planes, we found that additional ingredients, beyond the minimal ones presented so far, are necessary to avoid the presence of unstable modes. We enumerate the minimal setups for (meta)stable de Sitter vacua to arise in this context.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا