Do you want to publish a course? Click here

Evidence for TiO in the atmosphere of the hot Jupiter HAT-P-65 b

235   0   0.0 ( 0 )
 Added by Guo Chen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the low-resolution transmission spectra of the puffy hot Jupiter HAT-P-65b (0.53 M$_mathrm{Jup}$, 1.89 R$_mathrm{Jup}$, $T_mathrm{eq}=1930$ K), based on two transits observed using the OSIRIS spectrograph on the 10.4 m Gran Telescopio CANARIAS (GTC). The transmission spectra of the two nights are consistent, covering the wavelength range 517--938 nm and consisting of mostly 5 nm spectral bins. We perform equilibrium-chemistry spectral retrieval analyses on the jointly fitted transmission spectrum and obtain an equilibrium temperature of $1645^{+255}_{-244}$ K and a cloud coverage of $36^{+23}_{-17}$%, revealing a relatively clear planetary atmosphere. Based on free-chemistry retrieval, we report strong evidence for TiO. Additional individual analyses in each night reveal weak-to-moderate evidence for TiO in both nights, but moderate evidence for Na or VO only in one of the nights. Future high-resolution Doppler spectroscopy as well as emission observations will help confirm the presence of TiO and constrain its role in shaping the vertical thermal structure of HAT-P-65bs atmosphere.



rate research

Read More

For solar-system objects, ultraviolet spectroscopy has been critical in identifying sources for stratospheric heating and measuring the abundances of a variety of hydrocarbon and sulfur-bearing species, produced via photochemical mechanisms, as well as oxygen and ozone. To date, less than 20 exoplanets have been probed in this critical wavelength range (0.2-0.4 um). Here we use data from Hubbles newly implemented WFC3 UVIS G280 grism to probe the atmosphere of the hot Jupiter HAT-P-41b in the ultraviolet through optical in combination with observations at infrared wavelengths. We analyze and interpret HAT-P-41bs 0.2-5.0 um transmission spectrum using a broad range of methodologies including multiple treatments of data systematics as well as comparisons with atmospheric forward, cloud microphysical, and multiple atmospheric retrieval models. Although some analysis and interpretation methods favor the presence of clouds or potentially a combination of Na, VO, AlO, and CrH to explain the ultraviolet through optical portions of HAT-P-41bs transmission spectrum, we find that the presence of a significant H- opacity provides the most robust explanation. We obtain a constraint for the abundance of H-, log(H-) = -8.65 +/- 0.62 in HAT-P-41bs atmosphere, which is several orders of magnitude larger than predictions from equilibrium chemistry for a 1700 - 1950 K hot Jupiter. We show that a combination of photochemical and collisional processes on hot hydrogen-dominated exoplanets can readily supply the necessary amount of H- and suggest that such processes are at work in HAT-P-41b and many other hot Jupiter atmospheres.
185 - Ming Zhao 2014
We report secondary eclipse photometry of the hot Jupiter HAT-P-32Ab, taken with Hale/WIRC in H and Ks bands and with Spitzer/IRAC at 3.6 and 4.5 micron. We carried out adaptive optics imaging of the planet host star HAT-P-32A and its companion HAT-P-32B in the near-IR and the visible. We clearly resolve the two stars from each other and find a separation of 2.923 +/- 0. 004 and a position angle 110.64 deg +/- 0.12 deg. We measure the flux ratios of the binary in g r i z and H & Ks bands, and determine Teff = 3565 +/- 82 K for the companion star, corresponding to an M1.5 dwarf. We use PHOENIX stellar atmosphere models to correct the dilution of the secondary eclipse depths of the hot Jupiter due to the presence of the M1.5 companion. We also improve the secondary eclipse photometry by accounting for the non-classical, flux-dependent nonlinearity of the WIRC IR detector in the H band. We measure planet-to-star flux ratios of 0.090 +/- 0.033%, 0.178 +/- 0.057%, 0.364 +/- 0.016%, and 0.438 +/- 0.020% in the H, Ks, 3.6 and 4.5 micron bands, respectively. We compare these with planetary atmospheric models, and find they prefer an atmosphere with a temperature inversion and inefficient heat redistribution. However, we also find that the data are equally well-described by a blackbody model for the planet with Tp = 2042 +/- 50 K. Finally, we measure a secondary eclipse timing offset of 0.3 +/- 1.3 min from the predicted mid-eclipse time, which constrains e = 0.0072 +0.0700/-0.0064 when combined with RV data and is more consistent with a circular orbit.
As an exoplanet orbits its host star it reflects and emits light, forming a distinctive phase curve. By observing this light, we can study the atmosphere and surface of distant planets. The planets in our Solar System show a wide range of atmospheric phenomena, with stable wind patterns, changing storms, and evolving anomalies. Brown dwarfs also exhibit atmospheric variability. Such temporal variability in the atmosphere of a giant exoplanet has not to date been observed. HAT-P-7 b is an exoplanet with a known offset in the peak of its phase curve. Here we present variations in the peak offset ranging between -0.086+0.033-0.033 to 0.143+0.040-0.037 in phase, implying that the peak brightness repeatedly shifts from one side of the planets substellar point to the other. The variability occurs on a timescale of tens to hundreds of days. These shifts in brightness are indicative of variability in the planets atmosphere, and result from a changing balance of thermal emission and reflected flux from the planets dayside. We suggest that variation in wind speed in the planetary atmosphere, leading to variable cloud coverage on the dayside and a changing energy balance, is capable of explaining the observed variation.
We present a comprehensive analysis of the 0.3--5,$mu$m transit spectrum for the inflated hot Jupiter HAT-P-41b. The planet was observed in transit with Hubble STIS and WFC3 as part of the Hubble Panchromatic Comparative Exoplanet Treasury (PanCET) program, and we combine those data with warm textit{Spitzer} transit observations. We extract transit depths from each of the data sets, presenting the STIS transit spectrum (0.29--0.93,$mu$m) for the first time. We retrieve the transit spectrum both with a free-chemistry retrieval suite (AURA) and a complementary chemical equilibrium retrieval suite (PLATON) to constrain the atmospheric properties at the day-night terminator. Both methods provide an excellent fit to the observed spectrum. Both AURA and PLATON retrieve a metal-rich atmosphere for almost all model assumptions (most likely O/H ratio of $log_{10}{Z/Z_{odot}} = 1.46^{+0.53}_{-0.68}$ and $log_{10}{Z/Z_{odot}} = 2.33^{+0.23}_{-0.25}$, respectively); this is driven by a 4.9-$sigma$ detection of H$_2$O as well as evidence of gas absorption in the optical ($>$2.7-$sigma$ detection) due to Na, AlO and/or VO/TiO, though no individual species is strongly detected. Both retrievals determine the transit spectrum to be consistent with a clear atmosphere, with no evidence of haze or high-altitude clouds. Interior modeling constraints on the maximum atmospheric metallicity ($log_{10}{Z/Z_{odot}} < 1.7$) favor the AURA results. The inferred elemental oxygen abundance suggests that HAT-P-41b has one of the most metal-rich atmospheres of any hot Jupiters known to date. Overall, the inferred high metallicity and high inflation make HAT-P-41b an interesting test case for planet formation theories.
We report the discovery of HAT-P-30b, a transiting exoplanet orbiting the V=10.419 dwarf star GSC 0208-00722. The planet has a period P=2.810595+/-0.000005 d, transit epoch Tc = 2455456.46561+/-0.00037 (BJD), and transit duration 0.0887+/-0.0015 d. The host star has a mass of 1.24+/-0.04 Msun, radius of 1.21+/-0.05 Rsun, effective temperature 6304+/-88 K, and metallicity [Fe/H] = +0.13+/-0.08. The planetary companion has a mass of 0.711+/-0.028 Mjup, and radius of 1.340+/-0.065 Rjup yielding a mean density of 0.37+/-0.05 g cm^-3. We also present radial velocity measurements that were obtained throughout a transit that exhibit the Rossiter-McLaughlin effect. By modeling this effect we measure an angle of lambda = 73.5+/-9.0 deg between the sky projections of the planets orbit normal and the stars spin axis. HAT-P-30b represents another example of a close-in planet on a highly tilted orbit, and conforms to the previously noted pattern that tilted orbits are more common around stars with Teff > 6250 K.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا