A Cohomological Non Abelian Hodge Theorem in Positive Characteristic


Abstract in English

We start with a curve over an algebraically closed ground field of positive characteristic $p>0$. By using specialization techniques, under suitable natural coprimality conditions, we prove a cohomological Simpson Correspondence between the moduli space of Higgs bundles and the one of connections on the curve. We also prove a new $p$-multiplicative periodicity concerning the cohomology rings of Dolbeault moduli spaces of degrees differing by a factor of $p$. By coupling this $p$-periodicity in characteristic $p$ with lifting/specialization techniques in mixed characteristic, we find, in arbitrary characteristic, cohomology ring isomorphisms between the cohomology rings of Dolbeault moduli spaces for different degrees coprime to the rank. It is interesting that this last result is proved as follows: we prove a weaker version in positive characteristic; we lift and strengthen the weaker version to the result in characteristic zero; finally, we specialize the result to positive characteristic. The moduli spaces we work with admit certain natural morphisms (Hitchin, de Rham-Hitchin, Hodge-Hitchin), and all the cohomology ring isomorphisms we find are filtered isomorphisms for the resulting perverse Leray filtrations.

Download