Auto-weighted low-rank representation for clustering


Abstract in English

In this paper, a novel unsupervised low-rank representation model, i.e., Auto-weighted Low-Rank Representation (ALRR), is proposed to construct a more favorable similarity graph (SG) for clustering. In particular, ALRR enhances the discriminability of SG by capturing the multi-subspace structure and extracting the salient features simultaneously. Specifically, an auto-weighted penalty is introduced to learn a similarity graph by highlighting the effective features, and meanwhile, overshadowing the disturbed features. Consequently, ALRR obtains a similarity graph that can preserve the intrinsic geometrical structures within the data by enforcing a smaller similarity on two dissimilar samples. Moreover, we employ a block-diagonal regularizer to guarantee the learned graph contains $k$ diagonal blocks. This can facilitate a more discriminative representation learning for clustering tasks. Extensive experimental results on synthetic and real databases demonstrate the superiority of ALRR over other state-of-the-art methods with a margin of 1.8%$sim$10.8%.

Download