Do you want to publish a course? Click here

Random Spreading for Unsourced MAC with Power Diversity

121   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose an improvement of the random spreading approach with polar codes for unsourced multiple access. Each user encodes its message by a polar code, and the coded bits are then spread using a random spreading sequence. The proposed approach divides the active users into different groups, and employs different power levels for each group in such a way that the average power constraint is satisfied. We formulate and solve an optimization problem to determine the number of groups, and the number of users and power level of each group. Extensive simulations show that the proposed approach outperforms the existing methods, especially when the number of active users is large.



rate research

Read More

The unsourced MAC model was originally introduced to study the communication scenario in which a number of devices with low-complexity and low-energy wish to upload their respective messages to a base station. In the original problem formulation, all devices communicate using the same information rate. This may be very inefficient in certain wireless situations with varied channel conditions, power budgets, and payload requirements at the devices. This paper extends the original problem setting so as to allow for such variability. More specifically, we consider the scenario in which devices are clustered into two classes, possibly with different SNR levels or distinct payload requirements. In the cluster with higher power,devices transmit using a two-layer superposition modulation. In the cluster with lower energy, users transmit with the same base constellation as in the high power cluster. Within each layer, devices employ the same codebook. At the receiver, signal groupings are recovered using Approximate Message Passing(AMP), and proceeding from the high to the low power levels using successive interference cancellation (SIC). This layered architecture is implemented using Coded Compressed Sensing(CCS) within every grouping. An outer tree code is employed to stitch fragments together across times and layers, as needed.This pragmatic approach to heterogeneous CCS is validated numerically and design guidelines are identified.
This paper investigates the issue of cooperative activity detection for grant-free random access in the sixth-generation (6G) cell-free wireless networks with sourced and unsourced paradigms. First, we propose a cooperative framework for solving the problem of device activity detection in sourced random access. In particular, multiple access points (APs) cooperatively detect the device activity via exchanging low-dimensional intermediate information with their neighbors. This is enabled by the proposed covariance-based algorithm via exploiting both the sparsity-promoting and similarity-promoting terms of the device state vectors among neighboring APs. A decentralized approximate separating approach is introduced based on the forward-backward splitting strategy for addressing the formulated problem. Then, the proposed activity detection algorithm is adopted as a decoder of cooperative unsourced random access, where the multiple APs cooperatively detect the list of transmitted messages regardless of the identity of the transmitting devices. Finally, we provide sufficient conditions on the step sizes that ensure the convergence of the proposed algorithm in the sense of Bregman divergence. Simulation results show that the proposed algorithm is efficient for addressing both sourced and unsourced massive random access problems, while requires a shorter signature sequence and accommodates a significantly larger number of active devices with a reasonable antenna array size, compared with the state-of-art algorithms.
Motivated by the analogy between successive interference cancellation and iterative belief-propagation on erasure channels, irregular repetition slotted ALOHA (IRSA) strategies have received a lot of attention in the design of medium access control protocols. The IRSA schemes have been mostly analyzed for theoretical scenarios for homogenous sources, where they are shown to substantially improve the system performance compared to classical slotted ALOHA protocols. In this work, we consider generic systems where sources in different importance classes compete for a common channel. We propose a new prioritized IRSA algorithm and derive the probability to correctly resolve collisions for data from each source class. We then make use of our theoretical analysis to formulate a new optimization problem for selecting the transmission strategies of heterogenous sources. We optimize both the replication probability per class and the source rate per class, in such a way that the overall system utility is maximized. We then propose a heuristic-based algorithm for the selection of the transmission strategy, which is built on intrinsic characteristics of the iterative decoding methods adopted for recovering from collisions. Experimental results validate the accuracy of the theoretical study and show the gain of well-chosen prioritized transmission strategies for transmission of data from heterogenous classes over shared wireless channels.
Spectral efficiency for asynchronous code division multiple access (CDMA) with random spreading is calculated in the large system limit allowing for arbitrary chip waveforms and frequency-flat fading. Signal to interference and noise ratios (SINRs) for suboptimal receivers, such as the linear minimum mean square error (MMSE) detectors, are derived. The approach is general and optionally allows even for statistics obtained by under-sampling the received signal. All performance measures are given as a function of the chip waveform and the delay distribution of the users in the large system limit. It turns out that synchronizing users on a chip level impairs performance for all chip waveforms with bandwidth greater than the Nyquist bandwidth, e.g., positive roll-off factors. For example, with the pulse shaping demanded in the UMTS standard, user synchronization reduces spectral efficiency up to 12% at 10 dB normalized signal-to-noise ratio. The benefits of asynchronism stem from the finding that the excess bandwidth of chip waveforms actually spans additional dimensions in signal space, if the users are de-synchronized on the chip-level. The analysis of linear MMSE detectors shows that the limiting interference effects can be decoupled both in the user domain and in the frequency domain such that the concept of the effective interference spectral density arises. This generalizes and refines Tse and Hanlys concept of effective interference. In Part II, the analysis is extended to any linear detector that admits a representation as multistage detector and guidelines for the design of low complexity multistage detectors with universal weights are provided.
Totally asynchronous code-division multiple-access (CDMA) systems are addressed. In Part I, the fundamental limits of asynchronous CDMA systems are analyzed in terms of spectral efficiency and SINR at the output of the optimum linear detector. The focus of Part II is the design of low-complexity implementations of linear multiuser detectors in systems with many users that admit a multistage representation, e.g. reduced rank multistage Wiener filters, polynomial expansion detectors, weighted linear parallel interference cancellers. The effects of excess bandwidth, chip-pulse shaping, and time delay distribution on CDMA with suboptimum linear receiver structures are investigated. Recursive expressions for universal weight design are given. The performance in terms of SINR is derived in the large-system limit and the performance improvement over synchronous systems is quantified. The considerations distinguish between two ways of forming discrete-time statistics: chip-matched filtering and oversampling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا