Do you want to publish a course? Click here

Dyadic Carleson embedding and sparse domination of weighted composition operators on strictly pseudoconvex domains

124   0   0.0 ( 0 )
 Added by Bingyang Hu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study the behavior of the weighted composition operators acting on Bergman spaces defined on strictly pseudoconvex domains via the sparse domination technique from harmonic analysis. As a byproduct, we also prove a weighted type estimate for the weighted composition operators which is adapted to Sawyer-testing conditions. Our results extend the work by the first author, Li, Shi and Wick under a much more general setting.



rate research

Read More

We investigate regularity properties of the $overline{partial}$-equation on domains in a complex euclidean space that depend on a parameter. Both the interior regularity and the regularity in the parameter are obtained for a continuous family of pseudoconvex domains. The boundary regularity and the regularity in the parameter are also obtained for smoothly bounded strongly pseudoconvex domains.
We obtain local estimates, also called propagation of smallness or Remez-type inequalities, for analytic functions in several variables. Using Carleman estimates, we obtain a three sphere-type inequality, where the outer two spheres can be any sets satisfying a boundary separation property, and the inner sphere can be any set of positive Lebesgue measure. We apply this local result to characterize the dominating sets for Bergman spaces on strongly pseudoconvex domains in terms of a density condition or a testing condition on the reproducing kernels. Our methods also yield a sufficient condition for arbitrary domains and lower-dimensional sets.
We construct a complete proper holomorphic embedding from any strictly pseudoconvex domain with $mathcal{C}^2$-boundary in $mathbb{C}^n$ into the unit ball of $mathbb{C}^N$, for $N$ large enough, thereby answering a question of Alarcon and Forstneric.
92 - Beno^it F. Sehba 2017
We prove some characterizations of Schatten class Toeplitz operators on Bergman spaces of tube domains over symmetric cones for small exponents.
Suppose $ngeq 3$ and let $B$ be the open unit ball in $mathbb{R}^n$. Let $varphi: Bto B$ be a $C^2$ map whose Jacobian does not change sign, and let $psi$ be a $C^2$ function on $B$. We characterize bounded weighted composition operators $W_{varphi,psi}$ acting on harmonic Hardy spaces $h^p(B)$. In addition, we compute the operator norm of $W_{varphi,psi}$ on $h^p(B)$ when $varphi$ is a Mobius transformation of $B$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا