Do you want to publish a course? Click here

Searching to Sparsify Tensor Decomposition for N-ary Relational Data

135   0   0.0 ( 0 )
 Added by Quanming Yao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Tensor, an extension of the vector and matrix to the multi-dimensional case, is a natural way to describe the N-ary relational data. Recently, tensor decomposition methods have been introduced into N-ary relational data and become state-of-the-art on embedding learning. However, the performance of existing tensor decomposition methods is not as good as desired. First, they suffer from the data-sparsity issue since they can only learn from the N-ary relational data with a specific arity, i.e., parts of common N-ary relational data. Besides, they are neither effective nor efficient enough to be trained due to the over-parameterization problem. In this paper, we propose a novel method, i.e., S2S, for effectively and efficiently learning from the N-ary relational data. Specifically, we propose a new tensor decomposition framework, which allows embedding sharing to learn from facts with mixed arity. Since the core tensors may still suffer from the over-parameterization, we propose to reduce parameters by sparsifying the core tensors while retaining their expressive power using neural architecture search (NAS) techniques, which can search for data-dependent architectures. As a result, the proposed S2S not only guarantees to be expressive but also efficiently learns from mixed arity. Finally, empirical results have demonstrated that S2S is efficient to train and achieves state-of-the-art performance.



rate research

Read More

With the overwhelming popularity of Knowledge Graphs (KGs), researchers have poured attention to link prediction to fill in missing facts for a long time. However, they mainly focus on link prediction on binary relational data, where facts are usually represented as triples in the form of (head entity, relation, tail entity). In practice, n-ary relational facts are also ubiquitous. When encountering such facts, existing studies usually decompose them into triples by introducing a multitude of auxiliary virtual entities and additional triples. These
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Conventional machine learning algorithms cannot be applied until a data matrix is available to process. When the data matrix needs to be obtained from a relational database via a feature extraction query, the computation cost can be prohibitive, as the data matrix may be (much) larger than the total input relation size. This paper introduces Rk-means, or relational k -means algorithm, for clustering relational data tuples without having to access the full data matrix. As such, we avoid having to run the expensive feature extraction query and storing its output. Our algorithm leverages the underlying structures in relational data. It involves construction of a small {it grid coreset} of the data matrix for subsequent cluster construction. This gives a constant approximation for the k -means objective, while having asymptotic runtime improvements over standard approaches of first running the database query and then clustering. Empirical results show orders-of-magnitude speedup, and Rk-means can run faster on the database than even just computing the data matrix.
59 - Yu Pan , Maolin Wang , Zenglin Xu 2021
Tensor Decomposition Networks(TDNs) prevail for their inherent compact architectures. For providing convenience, we present a toolkit named TedNet that is based on the Pytorch framework, to give more researchers a flexible way to exploit TDNs. TedNet implements 5 kinds of tensor decomposition(i.e., CANDECOMP/PARAFAC(CP), Block-Term Tucker(BT), Tucker-2, Tensor Train(TT) and Tensor Ring(TR)) on traditional deep neural layers, the convolutional layer and the fully-connected layer. By utilizing these basic layers, it is simple to construct a variety of TDNs like TR-ResNet, TT-LSTM, etc. TedNet is available at https://github.com/tnbar/tednet.
The models of n-ary cross sentence relation extraction based on distant supervision assume that consecutive sentences mentioning n entities describe the relation of these n entities. However, on one hand, this assumption introduces noisy labeled data and harms the models performance. On the other hand, some non-consecutive sentences also describe one relation and these sentences cannot be labeled under this assumption. In this paper, we relax this strong assumption by a weaker distant supervision assumption to address the second issue and propose a novel sentence distribution estimator model to address the first problem. This estimator selects correctly labeled sentences to alleviate the effect of noisy data is a two-level agent reinforcement learning model. In addition, a novel universal relation extractor with a hybrid approach of attention mechanism and PCNN is proposed such that it can be deployed in any tasks, including consecutive and nonconsecutive sentences. Experiments demonstrate that the proposed model can reduce the impact of noisy data and achieve better performance on general n-ary cross sentence relation extraction task compared to baseline models.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا