A symmetry on weakly increasing trees and multiset Schett polynomials


Abstract in English

By considering the parity of the degrees and levels of nodes in increasing trees, a new combinatorial interpretation for the coefficients of the Taylor expansions of the Jacobi elliptic functions is found. As one application of this new interpretation, a conjecture of Ma-Mansour-Wang-Yeh is solved. Unifying the concepts of increasing trees and plane trees, Lin-Ma-Ma-Zhou introduced weakly increasing trees on a multiset. A symmetry joint distribution of even-degree nodes on odd levels and odd-degree nodes on weakly increasing trees is found, extending the Schett polynomials, a generalization of the Jacobi elliptic functions introduced by Schett, to multisets. A combinatorial proof and an algebraic proof of this symmetry are provided, as well as several relevant interesting consequences. Moreover, via introducing a group action on trees, we prove the partial $gamma$-positivity of the multiset Schett polynomials, a result implies both the symmetry and the unimodality of these polynomials.

Download