Do you want to publish a course? Click here

Disturbance-resilient Distributed Resource Allocation over Stochastic Networks using Uncoordinated Stepsizes

70   0   0.0 ( 0 )
 Added by Tie Ding
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This paper studies distributed resource allocation problem in multi-agent systems, where all the agents cooperatively minimize the sum of their cost functions with global resource constraints over stochastic communication networks. This problem arises from many practical domains such as economic dispatch in smart grid, task assignment, and power allocation in robotic control. Most of existing works cannot converge to the optimal solution if states deviate from feasible region due to disturbance caused by environmental noise, misoperation, malicious attack, etc. To solve this problem, we propose a distributed deviation-tracking resource allocation algorithm and prove that it linearly converges to the optimal solution with constant stepsizes. We further explore its resilience properties of the proposed algorithm. Most importantly, the algorithm still converges to the optimal solution under the disturbance injection and random communication failure. In order to improve the convergence rate, the optimal stepsizes for the fastest convergence rate are established. We also prove the algorithm converges linearly to the optimal solution in mean square even with uncoordinated stepsizes, i.e., agents are allowed to employ different stepsizes. Simulations are provided to verify the theoretical results.



rate research

Read More

We consider a resource allocation problem involving a large number of agents with individual constraints subject to privacy, and a central operator whose objective is to optimize a global, possibly nonconvex, cost while satisfying the agents constraints, for instance an energy operator in charge of the management of energy consumption flexibilities of many individual consumers. We provide a privacy-preserving algorithm that does compute the optimal allocation of resources, avoiding each agent to reveal her private information (constraints and individual solution profile) neither to the central operator nor to a third party. Our method relies on an aggregation procedure: we compute iteratively a global allocation of resources, and gradually ensure existence of a disaggregation, that is individual profiles satisfying agents private constraints, by a protocol involving the generation of polyhedral cuts and secure multiparty computations (SMC). To obtain these cuts, we use an alternate projection method, which is implemented locally by each agent, preserving her privacy needs. We adress especially the case in which the local and global constraints define a transportation polytope. Then, we provide theoretical convergence estimates together with numerical results, showing that the algorithm can be effectively used to solve the allocation problem in high dimension, while addressing privacy issues.
Distributed resource allocation is a central task in network systems such as smart grids, water distribution networks, and urban transportation systems. When solving such problems in practice it is often important to have nonasymptotic feasibility guarantees for the iterates, since overallocation of resources easily causes systems to break down. In this paper, we develop a distributed resource reallocation algorithm where every iteration produces a feasible allocation. The algorithm is fully distributed in the sense that nodes communicate only with neighbors over a given communication network. We prove that under mild conditions the algorithm converges to a point arbitrarily close to the optimal resource allocation. Numerical experiments demonstrate the competitive practical performance of the algorithm.
One of the key features of this paper is that the agents opinion of a social network is assumed to be not only influenced by the other agents but also by two marketers in competition. One of our contributions is to propose a pragmatic game-theoretical formulation of the problem and to conduct the complete corresponding equilibrium analysis (existence, uniqueness, dynamic characterization, and determination). Our analysis provides practical insights to know how a marketer should exploit its knowledge about the social network to allocate its marketing or advertising budget among the agents (who are the consumers). By providing relevant definitions for the agent influence power (AIP) and the gain of targeting (GoT), the benefit of using a smart budget allocation policy instead of a uniform one is assessed and operating conditions under which it is potentially high are identified.
We consider a new and general online resource allocation problem, where the goal is to maximize a function of a positive semidefinite (PSD) matrix with a scalar budget constraint. The problem data arrives online, and the algorithm needs to make an irrevocable decision at each step. Of particular interest are classic experiment design problems in the online setting, with the algorithm deciding whether to allocate budget to each experiment as new experiments become available sequentially. We analyze two greedy primal-dual algorithms and provide bounds on their competitive ratios. Our analysis relies on a smooth surrogate of the objective function that needs to satisfy a new diminishing returns (PSD-DR) property (that its gradient is order-reversing with respect to the PSD cone). Using the representation for monotone maps on the PSD cone given by Lowners theorem, we obtain a convex parametrization of the family of functions satisfying PSD-DR. We then formulate a convex optimization problem to directly optimize our competitive ratio bound over this set. This design problem can be solved offline before the data start arriving. The online algorithm that uses the designed smoothing is tailored to the given cost function, and enjoys a competitive ratio at least as good as our optimized bound. We provide examples of computing the smooth surrogate for D-optimal and A-optimal experiment design, and demonstrate the performance of the custom-designed algorithm.
Distributed processing over networks relies on in-network processing and cooperation among neighboring agents. Cooperation is beneficial when agents share a common objective. However, in many applications agents may belong to different clusters that pursue different objectives. Then, indiscriminate cooperation will lead to undesired results. In this work, we propose an adaptive clustering and learning scheme that allows agents to learn which neighbors they should cooperate with and which other neighbors they should ignore. In doing so, the resulting algorithm enables the agents to identify their clusters and to attain improved learning and estimation accuracy over networks. We carry out a detailed mean-square analysis and assess the error probabilities of Types I and II, i.e., false alarm and mis-detection, for the clustering mechanism. Among other results, we establish that these probabilities decay exponentially with the step-sizes so that the probability of correct clustering can be made arbitrarily close to one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا