It is known that there are 48 Virasoro algebras acting on the monster conformal field theory. We call conformal field theories with such a property, which are not necessarily chiral, code conformal field theories. In this paper, we introduce a notion of a framed algebra, which is a finite-dimensional non-associative algebra, and showed that the category of framed algebras and the category of code conformal field theories are equivalent. We have also constructed a new family of integrable conformal field theories using this equivalence. These conformal field theories are expected to be useful for the study of moduli spaces of conformal field theories.