Do you want to publish a course? Click here

Learning-based Compression for Material and Texture Recognition

116   0   0.0 ( 0 )
 Added by Yingpeng Deng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Learning-based image compression was shown to achieve a competitive performance with state-of-the-art transform-based codecs. This motivated the development of new learning-based visual compression standards such as JPEG-AI. Of particular interest to these emerging standards is the development of learning-based image compression systems targeting both humans and machines. This paper is concerned with learning-based compression schemes whose compressed-domain representations can be utilized to perform visual processing and computer vision tasks directly in the compressed domain. Such a characteristic has been incorporated as part of the scope and requirements of the new emerging JPEG-AI standard. In our work, we adopt the learning-based JPEG-AI framework for performing material and texture recognition using the compressed-domain latent representation at varing bit-rates. For comparison, performance results are presented using compressed but fully decoded images in the pixel domain as well as original uncompressed images. The obtained performance results show that even though decoded images can degrade the classification performance of the model trained with original images, retraining the model with decoded images will largely reduce the performance gap for the adopted texture dataset. It is also shown that the compressed-domain classification can yield a competitive performance in terms of Top-1 and Top-5 accuracy while using a smaller reduced-complexity classification model.



rate research

Read More

Existing compression methods typically focus on the removal of signal-level redundancies, while the potential and versatility of decomposing visual data into compact conceptual components still lack further study. To this end, we propose a novel conceptual compression framework that encodes visual data into compact structure and texture representations, then decodes in a deep synthesis fashion, aiming to achieve better visual reconstruction quality, flexible content manipulation, and potential support for various vision tasks. In particular, we propose to compress images by a dual-layered model consisting of two complementary visual features: 1) structure layer represented by structural maps and 2) texture layer characterized by low-dimensional deep representations. At the encoder side, the structural maps and texture representations are individually extracted and compressed, generating the compact, interpretable, inter-operable bitstreams. During the decoding stage, a hierarchical fusion GAN (HF-GAN) is proposed to learn the synthesis paradigm where the textures are rendered into the decoded structural maps, leading to high-quality reconstruction with remarkable visual realism. Extensive experiments on diverse images have demonstrated the superiority of our framework with lower bitrates, higher reconstruction quality, and increased versatility towards visual analysis and content manipulation tasks.
The problem of a deep learning model losing performance on a previously learned task when fine-tuned to a new one is a phenomenon known as Catastrophic forgetting. There are two major ways to mitigate this problem: either preserving activations of the initial network during training with a new task; or restricting the new network activations to remain close to the initial ones. The latter approach falls under the denomination of lifelong learning, where the model is updated in a way that it performs well on both old and new tasks, without having access to the old tasks training samples anymore. Recently, approaches like pruning networks for freeing network capacity during sequential learning of tasks have been gaining in popularity. Such approaches allow learning small networks while making redundant parameters available for the next tasks. The common problem encountered with these approaches is that the pruning percentage is hard-coded, irrespective of the number of samples, of the complexity of the learning task and of the number of classes in the dataset. We propose a method based on Bayesian optimization to perform adaptive compression/pruning of the network and show its effectiveness in lifelong learning. Our method learns to perform heavy pruning for small and/or simple datasets while using milder compression rates for large and/or complex data. Experiments on classification and semantic segmentation demonstrate the applicability of learning network compression, where we are able to effectively preserve performances along sequences of tasks of varying complexity.
Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.
We present a novel approach to object classification and detection which requires minimal supervision and which combines visual texture cues and shape information learned from freely available unlabeled web search results. The explosion of visual data on the web can potentially make visual examples of almost any object easily accessible via web search. Previous unsupervised methods have utilized either large scale sources of texture cues from the web, or shape information from data such as crowdsourced CAD models. We propose a two-stream deep learning framework that combines these cues, with one stream learning visual texture cues from image search data, and the other stream learning rich shape information from 3D CAD models. To perform classification or detection for a novel image, the predictions of the two streams are combined using a late fusion scheme. We present experiments and visualizations for both tasks on the standard benchmark PASCAL VOC 2007 to demonstrate that texture and shape provide complementary information in our model. Our method outperforms previous web image based models, 3D CAD model based approaches, and weakly supervised models.
This paper presents a novel hierarchical spatiotemporal orientation representation for spacetime image analysis. It is designed to combine the benefits of the multilayer architecture of ConvNets and a more controlled approach to spacetime analysis. A distinguishing aspect of the approach is that unlike most contemporary convolutional networks no learning is involved; rather, all design decisions are specified analytically with theoretical motivations. This approach makes it possible to understand what information is being extracted at each stage and layer of processing as well as to minimize heuristic choices in design. Another key aspect of the network is its recurrent nature, whereby the output of each layer of processing feeds back to the input. To keep the network size manageable across layers, a novel cross-channel feature pooling is proposed. The multilayer architecture that results systematically reveals hierarchical image structure in terms of multiscale, multiorientation properties of visual spacetime. To illustrate its utility, the network has been applied to the task of dynamic texture recognition. Empirical evaluation on multiple standard datasets shows that it sets a new state-of-the-art.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا