Non-Hermitian skin effect, namely that the eigenvalues and eigenstates of a non-Hermitian tight-binding Hamiltonian have significant differences under open or periodic boundary conditions, is a remarkable phenomenon of non-Hermitian systems. Inspired by the presence of the non-Hermitian skin effect, we study the evolution of wave-packets in non-Hermitian systems, which can be determined using the single-particle Greens function. Surprisingly, we find that in the thermodynamical limit, the Greens function does not depend on boundary conditions, despite the presence of skin effect. We proffer a general proof for this statement in arbitrary dimension with finite hopping range, with an explicit illustration in the non-Hermitian Su-Schrieffer-Heeger model. We also explore its applications in non-interacting open quantum systems described by the master equation, where we demonstrate that the evolution of the density matrix is independent of the boundary condition.