Identification of fake stereo audio


Abstract in English

Channel is one of the important criterions for digital audio quality. General-ly, stereo audio two channels can provide better perceptual quality than mono audio. To seek illegal commercial benefit, one might convert mono audio to stereo one with fake quality. Identifying of stereo faking audio is still a less-investigated audio forensic issue. In this paper, a stereo faking corpus is first present, which is created by Haas Effect technique. Then the effect of stereo faking on Mel Frequency Cepstral Coefficients (MFCC) is analyzed to find the difference between the real and faked stereo audio. Fi-nally, an effective algorithm for identifying stereo faking audio is proposed, in which 80-dimensional MFCC features and Support Vector Machine (SVM) classifier are adopted. The experimental results on three datasets with five different cut-off frequencies show that the proposed algorithm can ef-fectively detect stereo faking audio and achieve a good robustness.

Download