Constraining bright optical counterparts of Fast Radio Bursts


Abstract in English

Fast Radio Bursts (FRBs) are extremely energetic pulses of millisecond duration and unknown origin. In order to understand the phenomenon that emits these pulses, targeted and untargeted searches have been performed for multi-wavelength counterparts, including the optical. The objective of this work is to search for optical transients at the position of 8 well-localized FRBs, after the arrival of the burst on different time-scales (typically at one day, several months, and one year after FRB detection) in order to compare with known transient optical light curves. We used the Las Cumbres Observatory Global Telescope Network (LCOGT), which allows us to promptly take images owing to its network of twenty-three telescopes working around the world. We used a template subtraction technique on all the images we collected at different epochs. We have divided the subtractions into two groups, in one group we use the image of the last epoch as a template and in the other group we use the image of the first epoch as a template. We have searched for bright optical transients at the localizations of the FRBs (<1 arcsec) in the template subtracted images. We have found no optical transients, so we have set limiting magnitudes of optical counterparts. Typical limiting magnitudes in apparent (absolute) magnitudes for our LCOGT data are ~22 (-19) mag in the r-band. We have compared our limiting magnitudes with light curves of superluminous supernovae (SLSNe), type Ia supernovae (SNe), supernovae associated with gamma-ray bursts (GRB SNe), a kilonova, and tidal disruption events (TDEs). We rule out that FRBs are associated with SLSN at a confidence of ~99.9%. We can also rule out the brightest sub-types of type Ia SNe, GRB SNe and TDEs (under some conditions) at similar confidence, though we cannot exclude scenarios where FRBs are associated with the faintest sub-type of each of these transient classes.

Download