No Arabic abstract
Fast Radio Bursts (FRBs) are extremely energetic pulses of millisecond duration and unknown origin. In order to understand the phenomenon that emits these pulses, targeted and untargeted searches have been performed for multi-wavelength counterparts, including the optical. The objective of this work is to search for optical transients at the position of 8 well-localized FRBs, after the arrival of the burst on different time-scales (typically at one day, several months, and one year after FRB detection) in order to compare with known transient optical light curves. We used the Las Cumbres Observatory Global Telescope Network (LCOGT), which allows us to promptly take images owing to its network of twenty-three telescopes working around the world. We used a template subtraction technique on all the images we collected at different epochs. We have divided the subtractions into two groups, in one group we use the image of the last epoch as a template and in the other group we use the image of the first epoch as a template. We have searched for bright optical transients at the localizations of the FRBs (<1 arcsec) in the template subtracted images. We have found no optical transients, so we have set limiting magnitudes of optical counterparts. Typical limiting magnitudes in apparent (absolute) magnitudes for our LCOGT data are ~22 (-19) mag in the r-band. We have compared our limiting magnitudes with light curves of superluminous supernovae (SLSNe), type Ia supernovae (SNe), supernovae associated with gamma-ray bursts (GRB SNe), a kilonova, and tidal disruption events (TDEs). We rule out that FRBs are associated with SLSN at a confidence of ~99.9%. We can also rule out the brightest sub-types of type Ia SNe, GRB SNe and TDEs (under some conditions) at similar confidence, though we cannot exclude scenarios where FRBs are associated with the faintest sub-type of each of these transient classes.
Fast radio bursts (FRBs) are an enigmatic class of extragalactic transients emitting Jy-level radio bursts in the GHz band, lasting for only a few ms. So far, some objects are known to repeat while several others are not, likely indicating multiple origins. There are many theoretical models, some predict prompt VHE or optical emission correlated with FRBs while others imply VHE afterglows hours after the FRB. To test these predictions and unravel the nature of FRB progenitors, the stereoscopic Imaging Atmospheric Cherenkov Telescopes (IACTs) system MAGIC has been participating in FRB observation campaigns since 2016. As IACTs are sensitive to Cherenkov photons in the UV/blue region of the electromagnetic spectrum and use photo-detectors with time response faster than a ms, MAGIC is also able to perform simultaneous optical observations through a dedicated system installed in the central PMT of its camera. The main challenge faced by MAGIC in searching for optical counterpart of FRBs is the presence of irreducible background optical events due to terrestrial sources. We present new results from MAGIC observations of the first repeating FRB 121102 during several MWL observation campaigns. The recently improved instrument and refined strategy to search for counterparts of FRBs in the VHE and optical bands will also be presented.
A handful of fast radio bursts (FRBs) are now known to repeat. However, the question remains --- do they all? We report on an extensive observational campaign with the Australian Square Kilometre Array Pathfinder (ASKAP), Parkes, and Robert C. Byrd Green Bank Telescope, searching for repeat bursts from FRBs detected by the Commensal Real-time ASKAP Fast Transients survey. In 383.2 hr of follow-up observations covering 27 FRBs initially detected as single bursts, only two repeat bursts from a single FRB, FRB 171019, were detected, which have been previously reported by Kumar et al. We use simulations of repeating FRBs that allow for clustering in burst arrival times to calculate new estimates for the repetition rate of FRB 171019, finding only slight evidence for incompatibility with the properties of FRB 121102. Our lack of repeat bursts from the remaining FRBs set limits on the model of all bursts being attributable to repeating FRBs. Assuming a reasonable range of repetition behaviour, at most 60% (90% C.L.) of these FRBs having an intrinsic burst distribution similar to FRB~121102. This result is shown to be robust against different assumptions on the nature of repeating FRB behaviour, and indicates that if indeed all FRBs repeat, the majority must do so very rarely.
Context. The increased detection rate of Fast Radio Bursts (FRBs) makes it likely to get samples of sizes $mathcal{O}(10^2)$ to $mathcal{O}(10^3)$ in the near future. Because of their extragalactic origin can help us in understanding the epoch of helium reionization. Aims. We try to identify the epoch of Helium II (HeII) reionization, via the observations of early FRBs in range of $z=3$ to $4$. Methods. We build a model of FRB Dispersion Measure following the HeII reionization model, density fluctuation in large scale structure, host galaxy interstellar medium and local environment of FRB contribution. The model is fit to the ideal intergalactic medium (IGM) dispersion measure model to check the goodness of constraining the HeII reionization via FRB measurement statistics. Conclusion. We report our findings under two categories, accuracy in detection of HeII reionization via FRBs assuming no uncertainty in the redshift measurement and alternatively assuming a varied level of uncertainty in redshift measurement of the FRBs. We show that under the first case, a detection of $Nsimmathcal{O} (10^2)$ FRBs give an uncertainty of $sigma (z_{r, fit})sim0.5$ from the fit model, and a detection of $Nsimmathcal{O} (10^3)$ gives an uncertainty of $sigma (z_{r, fit})sim0.1$. While assuming a redshift uncertainty of level $5-20%$, changes the $sigma (z_{r, fit})sim0.5$ to $0.6$ for $Nsim 100$ and $sigma (z_{r, fit})sim0.1$ to $0.15$ for $N sim 1000$ case.
The discovery of fast radio bursts (FRBs) about a decade ago opened up new possibilities for probing the ionization history of the Intergalactic Medium (IGM). In this paper we study the use of FRBs for tracing the epoch of HeII reionization, using simulations of their dispersion measures. We model dispersion measure contributions from the Milky Way, the IGM (homogeneous and inhomogeneous) and a possible host galaxy as a function of redshift and star formation rate. We estimate the number of FRBs required to distinguish between a model of the Universe in which helium reionization occurred at z = 3 from a model in which it occurred at z = 6 using a 2-sample Kolmogorov-Smirnoff test. We find that if the IGM is homogeneous >1100 FRBs are needed and that an inhomogeneous model in which traversal of the FRB pulse through galaxy halos increases the number of FRBs modestly, to >1600. We also find that to distinguish between a reionization that occurred at z = 3 or z = 3.5 requires ~5700 FRBs in the range 3 < z < 5.
We present the results of a coordinated campaign conducted with the Murchison Widefield Array (MWA) to shadow Fast Radio Bursts (FRBs) detected by the Australian Square Kilometre Array Pathfinder (ASKAP) at 1.4 GHz, which resulted in simultaneous MWA observations of seven ASKAP FRBs. We de-dispersed the $24$ $times$ $1.28$ MHz MWA images across the $170-200$ MHz band taken at 0.5 second time resolution at the known dispersion measures (DMs) and arrival times of the bursts and searched both within the ASKAP error regions (typically $sim$ $10$ arcmin $times$ $10$ arcmin), and beyond ($4$ deg $times$ $4$ deg). We identified no candidates exceeding a $5sigma$ threshold at these DMs in the dynamic spectra. These limits are inconsistent with the mean fluence scaling of $alpha=-1.8 pm 0.3$ (${cal F}_ u propto u^alpha$, where $ u$ is the observing frequency) that is reported for ASKAP events, most notably for the three high fluence (${cal F}_{1.4,{rm GHz}} gtrsim 100$ Jy ms) FRBs 171020, 180110 and 180324. Our limits show that pulse broadening alone cannot explain our non-detections, and that there must be a spectral turnover at frequencies above 200 MHz. We discuss and constrain parameters of three remaining plausible spectral break mechanisms: free-free absorption, intrinsic spectral turn-over of the radiative processes, and magnification of signals at ASKAP frequencies by caustics or scintillation. If free-free absorption were the cause of the spectral turnover, we constrain the thickness of the absorbing medium in terms of the electron temperature, $T$, to $< 0.03$ $(T/10^4 K)^{-1.35}$ pc for FRB 171020.